Octave Tutorial 5: How to plot data in Octave

with extracts from Introduction to Octave, by P.J.G. Long

In this tutorial you will learn how to
e plot data in Octave.

Octave has powerful facilities for plotting graphs via a second open-source program GNU-
PLOT. The basic command is plot(x,y), where x and y are the co-ordinate. If given just
one pair of numbers it plots a point, but usually you pass vectors, and it plots all the points
given by the two vectors joining them with straight lines.

Let us start with a few examples. First, we will plot the function f(z) = 2% over the interval
[0,1]. Here are some instructions on how to do that:

e Create a vector x of length 11 containing values between 0 and 1 using the linspace
command as follows:

octave#:#> x = linspace(0,1,11)

The vector x corresponds to the end points of 10 equally spaced subintervals of [0, 1].

e Now we will map these points to the function f(x) = 22 and store the values in the
vector y. Enter the following command:

octave#:#> y = x.7 2.

Don’t forget the “dot” in the command above, which tells Octave to take the square of
each entry of x. The command y= x.*x also works, but x*x will give an error message
because the dimensions of the vector x do not allow matrix multiplication.

e We now have defined our function on the interval. It’s time to plot it! Type in the
following command:

octave#:#> plot(x,y)

You should now have a new window on your screen that contains a plot of y = 2 from
x = 0 to x = 1 using a thin blue line to connect points. This is the default style of
plotting in Octave. To change the appearance of the plot, you need to add a third
argument to the plot command. For example, you can change the plot to appear as a
thin red line, with our data points indicated by x’s by typing

octave#:#> plot(x,y,’r-x’)

Detailed information on how to change the colour and style for symbols and lines is
given below.

In general, the syntax of the plot command is plot(x,y, [options]). ping in plot(x,y)
alone, without any [options] creates a plot of points connected by a thin blue line, as you
saw above. This is the default style of plotting. To change the appearance of plots, there are
several options available in Octave. You can change colour, data point markers, line style,
etc. The basic options can be implemented as follows:

octave#:#> plot(x,y,’ [colour] [linestyle] [marker]’, ’linewidth’, [n])
where



colour : Specifies the colour of the line. Some options are b,r,k, or g, corresponding to blue,
red, black, or green respectively.

linestyle : Specifies the style of the line you wish to plot. -,-- or (blank space) are common
examples corresponding to solid, dashed, or no line respectively. (Note: the no line
option will only work if you specify a marker)

marker : Specifies the data marker at each point in your figure. (blank space), * or o are
some examples that correspond to no markers, asterisks, and circles.

n : Specifies the thickness of the line being plotted (0.5 is the default).

Note that you can choose to specify values for only some of the options. If any options have
unspecified values, they turn to default values. For example,
octave#:#> plot(x,y,’ro’)
will plot x and y as a series of red circles, not connected by a line.
octave#:#> plot(x,y,’b--’,’linewidth’,3)
will plot x and y as a thick, blue, dashed line.

The next example consists in plotting two different functions on the same axis. Specifically,
we will plot the functions fi(z) = sin(x) and fy(z) = sin(z?) from z = 0 to x = 27, using
equally spaced points on the z-axis. The distance between successive points on the x-axis is
set to 0.01 units. Here are some instructions on how to create these plots:

e First of all, we clear the workspace and the figure window. To do that, enter the
following commands:

octave#:#> clear all; clf;

The clear all command clears all existing variables and other items from the workspace;
it also frees up system memory. The c1f command clears the current figure window.
This practice of clearing the workspace is highly recommended whenever you start a
fresh new set of operations in Octave.

e Now create a new vector x containing points between 0 and 27 that increase constantly
by 0.01. Since you want to control the step size between vector components, the colon
operator : is a better choice to generate the vector x than the 1inspace command, so

octave#:#> x = 0:0.01:2%pi;
e Now define the functions by creating two vectors y1 and y2:

octave#:#> yl
octave#:#> y2

sin(x) ;

sin(x.”~2);

e You can now create the plots by entering the following:
octave#:#> plot(x,yl,’k-’,’linewidth’,2);
You can add a grid on your plot by typing
octave#:#> grid on;



Now, if you type another plot command to plot y2, Octave will replace the existing
plot with the new, which is not what we want. To overlap the two plot, type

octave#:#> hold on;

This will allow you to plot multiple graphs within the same figure. From now on, any
new graph will be plotted on the same figure (to return to the default mode of one plot
per figure, type hold off at the end of this example). Now you are ready to type y2.
Type

octave#:#> plot(x,y2,’m--’,’linewidth’,2);

You can add a legend by typing

octave#:#> legend(’f1’,7£f2’);

Take note of what you see in the plot window. Consider what would have happened if
we had not included the hold on command.

Here is a recap of the plotting commands used in this tutorial.

plot(x,y, [options]): This command will plot corresponding values from vectors x
and y in a figure window. x, y must be the same length or an error will occur. Typing in
plot(x,y) alone, without any [options] creates a plot of points connected by a thin blue
line. Various possibilities exist for the [options] This is the default style of plotting. To
change the appearance of plots,

hold on: This command will allow you to plot multiple sets of data within the same
figure, rather than plotting only the last data-set requested. The command hold off will
turn this feature off.

grid on: This command will make a grid appear in the current figure window. Typing
grid off will remove the grid.

xlabel (’string’): This command will display the word string along the z-axis in the
current figure.

ylabel(’string’): This command will display the word string along the y-axis in the
current figure.

title(’string’): This command will display the word string as a title to the current
figure.

legend: Assuming that you have plotted one or more curves in same figure, typing
in legend(’stringl’,’string2’,...) will make the legend appear with stringl corre-
sponding to the first curve that was plotted, string2 corresponding to the second curve
plotted, and so on. Typing legend off will remove the legend.

Exercise 1: Plot the following function on the given interval.
flr)=e™, 0<z<1

Use 21 points (i.e. 20 subintervals) on the z-axis. Plot it as a solid red line of greater than
default thickness. Add a grid and give the plot the title ”Gaussian”. Recall that you can



compute the exponentional function using the pre-defined Octave function exp(x) (check
out the Octave help for more information on the function exp(x)).

Exercise 2 Plot on the same axis as in Exercise 1 the following functions on the interval
0<x <1,
fi(z) = sin(2rz), fol(x) = cos(2mx)

Let the points on the z-axis be spaced 0.025 units apart. Plot fi(z) using black asterisks
with no connecting line, and f5(x) using black circles with no connecting line. Label your

(1))

x- and y-axis, “x” and “y” respectively. Include an appropriate legend.



