- · HW lavailable. Due next Friday.
- · Practice problems for Chapters 1# 2 available in Canvas quizzes.

Section 2.3 Independence

P(A|B) = the probability that A occurs given B occurred Independence: B has nothing to do with A! (Or at least it doesn't effect the probability.) I.e., $P(A) = P(A \mid B) = \frac{P(AB)}{P(B)}$.

Examples?

Def: Events A and B are independent iff $P(AB) = P(A) \cdot P(B)$

Ex) Roll two dice.

$$A = \{first \ die = 1\}, \qquad B = \{second \ die = 1\},$$

 $C = \{sum \ of \ dice = 7\}, \qquad D = \{sum \ of \ dice = 3\}$

Q) Which pairs of events are independent?

$$\frac{A \ddagger B}{P(AB)} = P(both \ dize = 1) = P \xi(1, 1) \xi = \frac{1}{36}$$
 $P(AB) = P(A) \cdot P(B)$
 $P(B) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$
 $P(A) \cdot P(B) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$
 $P(A) \cdot P(B) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$
 $P(A) \cdot P(B) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36}$

$$\frac{A \notin C}{P(AC)} = P(first \ drl = 1, \ sum = 7)$$

$$= P(first \ dil = 1, \ sucond = 6)$$

$$= P\{(1, 6)3 = \frac{1}{36}$$

$$P(A) = \frac{1}{6}$$
, $P(C) = P\{(1,6), (2,5)(3,4), (4,3), (5,3), (6,1)\} = \frac{6}{36} = \frac{1}{6}$
50 $P(A) \cdot P(C) = \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{36} = P(AC)$ i.e. $A \in C$ are independent.

$$\frac{C \notin D}{C \cap D = 43}, P(CD) = O \neq P(C) \cdot P(D)$$

$$= C \notin D$$

$$= C \notin$$

$$\frac{A \notin D}{P(AD)} = P(1st die=1, sum=3) = \frac{1}{36}$$

$$P(AD) = P(1st die=1, sum=3) = \frac{1}{36}$$

$$P(A) = \frac{1}{6}, P(D) = P(1st die=1, sum=3) = \frac{1}{36}$$

$$P(A) = \frac{1}{6}, P(D) = P(1st die=1, sum=3) = \frac{1}{36}$$

$$P(A) = \frac{1}{6}, P(D) = \frac{1}{6}, \frac{2}{36} \neq P(AD)$$

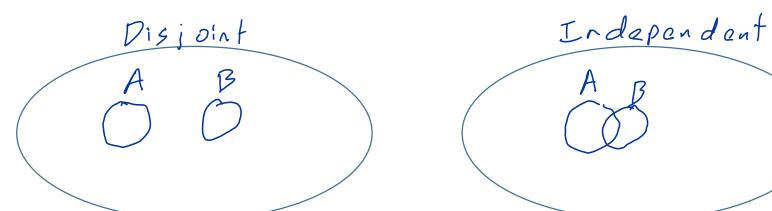
$$P(A) = \frac{1}{6}, P(D) = \frac{1}{6}, \frac{2}{36} \neq P(AD)$$

$$So dependent$$

A few points about independence:

• If A and B are independent, then so are A and B^c , also <u>in Lapandent</u>

• Mutually exclusive (i.e. disjoint) ≠ independent



If P(A), P(B) >0, \$\frac{1}{2} A \lambda B = \lambda \frac{3}{3}, \text{ then} P(AB) = P\frac{3}{3} = 0 \(\frac{1}{2} P(A) \cdot P(B)\)

Special case: If P(A) or P(B) = 0, then P(AB) = 0 = P(A). P(B)

50 A & B will be indep even if they are disjoint.

Independence picture: Proportional overlap

Ex) Roll a die with 100 sides. $A = \{roll \ is \ in \{1,2,3,...10\}\}$. $B = \{roll \ is \ in \{10,20,30,...100\}\}$. Are A and B independent?

$$P(AB) = \frac{P \{10\}}{P(A) \cdot P(B)} = \frac{10}{100} \cdot \frac{10}{100} = \frac{10}{100}$$

$$50 \quad A \notin B \quad \text{are}$$

$$10 \quad de \quad p \quad en \quad dont, \quad 50$$

$$P(A|B) = P(A)$$

$$P(A|B) = P(A)$$

$$P(A|B) = P(A)$$

$$P(A|B) = P(A)$$

32									
1	2	3	4	5	6	7	8	9 (10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Independence with more than two events

Def: Events $A_1, A_2, ... A_n$ are *independent* iff for any set of indices $1 \le i_1 < i_2 < \cdots < i_k \le n$ we have $P(A_{i_1}A_{i_2} \cdots A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k}).$

E.g., 3 events A, B, C are independent if:

$$P(AB) = P(A) \cdot P(B)$$
 $P(AC) = P(A) \cdot P(C)$
 $P(BC) = P(B) \cdot P(C)$
 $P(ABC) = P(A) \cdot P(C)$
 $P(ABC) = P(A) \cdot P(C)$

Pairwise independence vs independence

Ex) Roll two dice.

$$A = \{first \ die = 1\}, \qquad B = \{second \ die = 1\},$$

 $C = \{sum \ of \ dice = 7\}$

Are A, B, C independent?

A, B, C are

"pairwise indep", but

they are n=t

indep.

Independent random variables

Def: Let $X_1, X_2, ... X_n$ be random variables defined on the same probability space. Then $X_1, X_2, ..., X_n$ are independent iff

$$P(X_1 \in B_1, X_2 \in B_2, ..., X_n \in B_n) = \prod_{i=1}^{n} P(X_i \in B_i)$$

for all* choices of subsets $B_1, B_2, ..., B_n$ of the real line.

$$Ex) X, Y are indep if$$

$$P(x \in A, Y \in B) = P(x \in A) \cdot P(Y \in B) \quad \text{for any } A, B \subseteq R$$

$$Ex) X, Y \quad \text{are indep. dir rolls, then}$$

$$P(x \in [3,5], Y \in [4,7]) = P(x \in [3,5]) \cdot P(Y \in [4,7])$$

Independent discrete random variables

Fact: Let $X_1, X_2, ... X_n$ be **discrete** random variables defined on the same probability space. Then $X_1, X_2, ..., X_n$ are independent iff

$$P(X_1 = k_1, X_2 = k_2, ..., X_n = k_n) = \prod_i P(X_i = k_i)$$
 for all choices of $k_1, k_2, ..., k_n$ (of values that r.v.'s can take).

Ex) Roll two dice.
$$X = first \ roll$$
, $Y = second \ roll$

$$P(x=i, y=j) = P(x=i) \cdot P(y=j)$$

$$= \frac{1}{2} \cdot \frac$$

$$i, j \in \{1, 2, ... 6\}$$

Ex) Roll two dice. $X = first \ roll, Y = sum \ of \ rolls$. Are X and Y independent?

$$P(X = k_1, Y = k_2) \stackrel{?}{=} P(X = k_1) \cdot P(Y = k_2)$$
for $k_1 = \{1, 2, 3, ... 6\}, k_2 = \{2, 3, ..., 12\}.$

$$k_2 = 2, k_1 = 6$$

$$P(X = k_1, Y = k_2) \stackrel{?}{=} 0$$

indep. of &x=63, &Y=03