pi i	$\frac{\pi}{\sqrt{-1}}$
x = 3	define variable \mathbf{x} to be 3
x = [1 2 3]	set x to the 1×3 row vector $(1, 2, 3)$
x = [1; 2; 3]	set x to the 3×1 vector $(1, 2, 3)$
A = [1 2; 3 4]	set A to the 2 × 2 matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
x(2) = 7	change x_2 to 7
A(2,1) = 0	change A_{21} to 0
3*x	multiply each element of \mathbf{x} by 3
x+3	add 3 to each element of \mathbf{x}
x+y	add \mathbf{x} and \mathbf{y} element by element
A*x	product of matrix A and column vector \mathbf{x}
A*B	product of two matrices A and B
x.*y	element-wise product of vectors \mathbf{x} and \mathbf{y}
A^3	for a square matrix A , raise to third power
cos(A)	cosine of every element of A
sin(A)	sine of every element of A
x'	transpose of vector \mathbf{x}
Α'	transpose of vector A
A(2:12,4)	the submatrix of A consisting of the second to twelfth rows of the fourth column
A(2:12,4:5)	the submatrix of A consisting of the second to twelfth rows of the fourth and fifth columns
A(2:12,:)	the submatrix of A consisting of the second to twelfth rows of all columns
A([1:4,6],:)	the submatrix of A consisting of the first to fourth rows and sixth row
[A B; C D]	creates the matrix $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ where A, B, C, D are block matrices (blocks must
	have compatible sizes)
rand(12,4)	12×4 matrix with uniform random numbers in $[0, 1)$
zeros(12,4)	12×4 matrix of zeroes
ones(12,4)	12×4 matrix of ones
eye(12)	12×12 identity matrix
eye(12,4)	12×4 matrix whose first 4 rows are the 4×4 identity
linspace(1.2,4.7,100)	row vector of 100 equally spaced numbers from 1.2 to 4.7
diag(x)	matrix whose diagonal is the entries of \mathbf{x} (other elements are zero)
diag(x,n)	matrix whose diagonal is the entries of \mathbf{x} on diagonal n (other elements are zero)
<pre>sum(x)</pre>	sum of the elements of \mathbf{x}

for k=1:10 end	for loop taking k from 1 to 10 and performing the commands \ldots for each
<pre>hold on hold off plot3(x,y,z,'bo')</pre>	puts any new plots on top of the existing plot any new plot commands replace the existing plot (this is the default) plots the points of \mathbf{z} against the points of \mathbf{x} and \mathbf{y} using blue dots
axis([-0.1 1.1 -3 5])	changes the axes of the plot to be from -0.1 to 1.1 for the x-axis and -3 to 5 for the y-axis
<pre>semilogy(x,y,'bo') </pre>	plots \mathbf{y} against \mathbf{x} using a logarithmic scale for \mathbf{y}
<pre>plot(x,y,'r-')</pre>	plots the points of \mathbf{y} against the points of \mathbf{x} using red lines
<pre>plot(x,y,'bo')</pre>	plots the points of \mathbf{y} against the points of \mathbf{x} using blue dots
	diagonal matrix D of corresponding eigenvalues
[V D] = eig(A)	returns the matrix V whose columns are normalized eigenvectors of A and the
roots(a)	returns the solutions to $a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n = 0$
polyval(A)	than N elements) returns the coefficients of the characteristic polynomial of A
fft(f,N)	FFT transform of the vector \mathbf{f} using N points (pads \mathbf{f} with zeros if it has fewer
nextpow2(N)	calculates the next power of 2 of N
[Q R] = qr(A,0)	returns the matrices Q and R in the QR factorization of A
poryvar(a,x)	\mathbf{x}
polyval(a,x)	returns the values of the polynomial $a_1x^{n-1} + a_2x^{n-2} + \ldots a_n$ at the points of
vander(x)	returns the Vandermonde matrix for the points of \mathbf{x}
norm(x)	returns the norm (length) of a vector \mathbf{x}
length(A)	returns the larger of the number of rows and number of columns of A
cond(A)	returns the condition number of A
norm(A)	returns the (operator) norm of A
det(A)	returns the determinant of A
rref(A)	returns the reduced row echelon form of A
A^(-1)	returns the inverse of A
A\b	returns the solution \mathbf{x} to $A\mathbf{x} = \mathbf{b}$