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Seminal papers: (Candès, Romberg, Tao 2004), (Donoho
2004)

For the past 9 years: ∼2 new papers per day
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Motivating Problem: Magnetic Resonance Imaging (MRI)

“If Bryce took a single breath, the image would be blurred. That
meant deepening the anesthesia enough to stop respiration. It
would take a full two minutes for a standard MRI to capture the
image, but if the anesthesiologists shut down Bryce’s breathing for
that long, his glitchy liver would be the least of his problems.”
[Wired Magazine 2010]

Figure: Standard MRI
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would take a full two minutes for a standard MRI to capture the
image, but if the anesthesiologists shut down Bryce’s breathing for
that long, his glitchy liver would be the least of his problems.”
[Wired Magazine 2010]

Figure: Goal: reduce acquisition time
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MRI: Singing protons!

Figure: Standard MRI: Fully sampled DFT

Image reconstruction: Invert the DFT
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MRI: Singing protons!

Figure: Goal: reconstruct image from part of the DFT

Image reconstruction: Impossible?

Is there any information that we have not used?

Do images have structure?
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Sparsity!
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Sparse images

(a) Starry sky (b) U. Mich.

(c)
Angiography
(imaging
blood veins)

Are images generally sparse?
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Signal sparsity

(a) Golden gate bridge (b) Ordered wavelet coefficients

Images tend to be compressible, i.e. sparse in some basis.

“Natural” images may be sparsified via the appropriate
transform (wavelet, curvelet, shearlet...).

Sparsity lives in audio signals, radar, statistical models, PDE
solutions and much more.
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Mathematics of sparsity

(Combining sparsity with undersampling)
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Sparsity riddle

Riddle: A sleeping dragon guards n locked treasure chests.
One is filled with gold and the other n − 1 are empty. You
sneak into the dragon’s lair carrying with you a large weighing
machine. You wish to discover which chest holds the gold.
How many times do you have to use the weighing machine?

What if s of the chests contain gold, with s � n?
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Sparsity riddle

Riddle: A sleeping dragon guards n locked treasure chests.
One is filled with gold and the other n − 1 are empty. You
sneak into the dragon’s lair carrying with you a large weighing
machine. You wish to discover which chest holds the gold.
How many times do you have to use the weighing machine?
Ans: log n

 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0





0
100 kg

0
0
0
0
0
0


=

 100 kg
100 kg

0 kg



What if s of the chests contain gold, with s � n?
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Sparsity riddle

Riddle: A sleeping dragon guards n locked treasure chests.
One is filled with gold and the other n − 1 are empty. You
sneak into the dragon’s lair carrying with you a large weighing
machine. You wish to discover which chest holds the gold.
How many times do you have to use the weighing machine?

What if s of the chests contain gold, with s � n?

Group testing:
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Sparsity riddle

Riddle: A sleeping dragon guards n locked treasure chests.
One is filled with gold and the other n − 1 are empty. You
sneak into the dragon’s lair carrying with you a large weighing
machine. You wish to discover which chest holds the gold.
How many times do you have to use the weighing machine?

What if s of the chests contain gold, with s � n?

Single pixel camera (first made at rice, now sold at InView)
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Mathematical formalism

Measurements:
yi = 〈ai , x〉+ zi =

where z is a noise term, and x is sparse.

Matrix notation:
y = Ax + z =

Goal: Estimate x . (Even though m < n.)
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Noiseless lower bound

Question for the audience: What is a lower bound on the
number of measurements m (rows of A) needed to recover x?

A x

Answer: Recovery is impossible if there exists x ′ 6= x such that
Ax = Ax ′ and ‖x ′‖0 ≤ s.
⇒ We need for m ≥ 2s for uniform recovery.
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Noiseless lower bound

Question for the audience: What is a lower bound on the
number of measurements m (rows of A) needed to recover x?

A x

Answer: Recovery is impossible if there exists x ′ 6= x such that
Ax = Ax ′ and ‖x ′‖0 ≤ s.
⇒ We need for m ≥ 2s for uniform recovery.
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Can we reconstruct x with O(s) measurements?

Reconstruction method:

min
∥∥x ′∥∥

0
such that Ax ′ = y (0.1)

‖x ′‖0 := number of non-zero entries of x ′.

What are conditions on A that allow reconstruction of x?
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Incoherence condition

Bad: Let Ai be the i-th column of A and suppose A1 = A2. Then
Ae1 = Ae2 ⇒ reconstruction of sparse vectors is impossible.

Definition (Incoherence)

Suppose (w.l.o.g.) that A is column normalized. Define

µ(A) := max
i 6=j
〈Ai ,Aj〉

Good: µ is small.

Predates compressed sensing.
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Theory before compressed sensing

min
∥∥x ′∥∥

0
such that Ax ′ = y (0.2)

Theorem (Donoho, Elad 2003)

Suppose that µ · s < 1/2. Then x̂ = x .

Sparsity + incoherence leads to exact reconstruction of x .

Challenge 1:
Challenge 2:
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Theory before compressed sensing

min
∥∥x ′∥∥

0
such that Ax ′ = y (0.2)

Theorem (Donoho, Elad 2003)

Suppose that µ · s < 1/2. Then x̂ = x .

Sparsity + incoherence leads to exact reconstruction of x .

Challenge 1: Welch bound: Whenever m < n/2, µ > 1/
√

2m.
⇒ the theorem requires m ≥ 2s2.
Challenge 2: Sparsity minimization takes exponential time. One
needs to check each of the 2m sparsity patterns.
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`1 minimization (Chen, Donoho, Saunders 1999)

min
∥∥x ′∥∥

0
subject to Ax ′ = y . (0.3)

(a) Subspace
hits corner of
`1 ball

(b) `1 ball in
high
dimension
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Theory before compressed sensing

min
∥∥x ′∥∥

1
such that Ax ′ = y (0.4)

Theorem (Donoho, Elad 2003)

Suppose that µ · s < 1/2. Then x̂ = x .

Challenge 1: Welch bound: Whenever m < n/2, µ > 1/
√

2m.
⇒ the theorem requires m ≥ 2s2.
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Compressed sensing ∼2004

Theorem (Candès, Romberg, Tao 2004, Donoho 2004)

m = O(s log(n)) random Fourier coefficients are sufficient to
reconstruct an s-sparse vector by `1 minimization.

Ignoring logarithmic terms, O(s) measurements are sufficient.
log(n) is the ‘price of not knowing the support’.
Sets off an explosion of work still going today.
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Back to MRI

Do the conditions of the theorem match MRI applications?

“If Bryce took a single breath, the image would be blurred. That
meant deepening the anesthesia enough to stop respiration. It
would take a full two minutes for a standard MRI to capture the
image, but if the anesthesiologists shut down Bryce’s breathing for
that long, his glitchy liver would be the least of his problems.”
[Wired Magazine 2010]
Compressed sensing + Vasanawala + Lustig = “Vasanawala and
Lustig needed only 40 seconds to gather enough data to produce a
crystal-clear image of Bryces liver [...] good enough for Vasanawala
to see the blockages in both bile ducts. An interventional
radiologist snaked a wire into each duct, gently clearing the
blockages and installing tiny tubes that allowed the bile to drain
properly. And with that a bit of math and a bit of medicine
Bryces lab test results headed back to normal.”
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Theory of compressed sensing.

Original theorem relied on constructing a dual certificate and
analyzing the geometry of the `1 ball (challenging).

Over time, simpler methods were developed.
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Restricted isometry property (RIP) [Candès and Tao 2005]

Definition (Restricted isometry property)

We say that A satisfies the restricted isometry property of order s
if there exists δs ∈ (0, 1) such that

(1− δs) ‖x‖22 ≤ ‖Ax‖
2
2 ≤ (1 + δs) ‖x‖22

for all x satisfying ‖x‖0 ≤ s.

Sparse signals are far from the null space of A.

Many kinds of random matrices satisfy the RIP with high
probability as long as m ≥ O(s polylog(n)). No deterministic
constructions are known!

An appeal to geometric functional analysis or probability in
high dimensions.
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Implications of RIP

y = Ax .

x̂ := arg min
∥∥x ′∥∥

1
such that Ax ′ = y

Theorem (Candès, Romberg, Tao 2005)

Suppose ‖x‖0 ≤ s and that A satisfies the restricted isometry
property of order 2s with δ2s ≤

√
2− 1. Then

x̂ = x .

Robust to noise and approximate sparsity.

Many other greedy reconstruction techniques are also exact
under the RIP.
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Implications of RIP

y = Ax .

x̂ := arg min
∥∥x ′∥∥

1
such that Ax ′ = y

Theorem (Candès, Romberg, Tao 2005)

Suppose ‖x‖0 ≤ s and that A satisfies the restricted isometry
property of order 2s with δ2s ≤

√
2− 1. Then

x̂ = x .

Proof sketch:

1 Note: Ax̂ = Ax ⇒ A(x̂ − x) = 0.

2 By the RIP, ‖A(x̂ − x)‖2 ≥ c ‖x̂ − x‖2. (Takes a bit of work.)

Thus 0 = ‖A(x̂ − x)‖2 ≥ c ‖x̂ − x‖2
⇒ x̂ − x = 0 �.
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Restricted Isometry Property (RIP)

RIP theory (Candès, Tao 2005, Vershynin, Rudelson 2006):

If A is a Gaussian matrix, then we need m = O(s log(n/s))
measurements.

If A is a subsampled discrete Fourier transform, we need
m = O(s log4(n)) measurements.

Open problem: Prove the RIP for the DFT with
m = O(s log n) (solution would solve the Λ1 problem).

Q: Is the RIP requirement too strong?
A: RIP gives a uniform result, i.e., based on A an adversary can
pick x , but whatever sparse x she picks, it will be reconstructed.
Can we weaken our assumptions if the signal is not adversarial?
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A general, RIPless theory (Candès, P. 2011)

We assume ai
dist
= a ∼ F and require:

Isotropy property:
E aa∗ = Id .

Incoherence property:

µ := max
1≤i≤n

〈a, ei 〉2 <∞ (0.5)

Note:

The isotropy condition prevents A from being rank deficient
when enough samples are taken. (limm→∞

1
mA
∗A = Id a.s.)

Regardless of F , µ ≥ 1. Low µ implies strong results.
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Bad example: Subsampled identity matrix

a ∼
√
n · Uniform(e1, e2, e3, . . . , en).

Isotropy property:

E aa∗ =
1

n

n∑
i=1

neie
∗
i = Id .

Incoherence property: µ :=
√
n 〈e1, e1〉2 = n� 1

y = subset of the entries of x

⇒ Reconstruction of sparse x is impossible.
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Measurement matrices that fit the model

Sensing vectors with independent components (with
mean zero and variance 1).

Gaussian (µ = 6 log n)
Binary (µ = 1)

Subsampled orthogonal/unitary transforms.
Fourier (µ = 1)

Subsampled convolutions. (The Fourier coefficients of the
convolution vector must have magnitude (nearly) 1 to ensure
(near) isotropy.)

Subsampled tight or continuous frames.
Fourier sampled from continuous frequency spectrum.

Statistical linear model.
Samples chosen independently from a population.
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Theorem

Theorem

Let x be an arbitrary fixed vector of length n with ‖x‖0 = s. Then
with high probability x̂ = x provided that m ≥ C · µ(F ) · s · log n.

Robust to noise and inexact sparsity.

Prior stability results [Rudelson and Vershynin, 2008] for
subsampled Fourier required m ≥ Cs · log4(n) (using the RIP).
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Near optimality

(Near) minimal number of measurements: Take ai to be a
subsampled row from a complex DFT with n = s · t. Take x
to be the s-sparse dirac comb ⇒ Fx is t-sparse.

It follows that 〈ai , x〉 = 0 for i = 1, 2, . . . ,m with probability
at least 1/n as long as m - s log n, in which case no method
can successfully recover x . (Note µ = 1.)
This can be generalized to show that we need m % sµ log n
when µ > 1.
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Statistics

Statistical variable selection
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Linear model in statistics

Example:

yi := lifespan of person i .

ai =(exercise, weight, relationships, drugs, diet, ...)

Linear model:

yi = 〈ai , x〉+ zi i = 1, 2, . . . ,m.

Sparsity: Only a small number of covariates are significant.
Challenge: ai usually does not satisfy the probabilistic assumptions
needed for compressed sensing.
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Sparsity with deterministic measurements

What if A is non-random?
No RIP. Adversarial x may be in the null space of A.

Can we say something about most signals x?

Solution: Put a prior distribution on x . Prove that x is well
reconstructed with high probability.

Prior: The non-zero entries of x are chosen at random, and
the signs of the non-zero entries of x are random.
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Support recovery

y = Ax + z

zi ∼ N(0, σ2)

LASSO:

x̂ := arg min
∥∥Ax ′ − y

∥∥2
2

+ 2σ
√

log n
∥∥x ′∥∥

1

Theorem

Let T be the support of x and suppose m ≥ |T | log n. Suppose
that

Assumption 1: min
i∈T
|xi | > 8σ

√
2 log n

Assumption 2: µ(A) .
1

log n
and ||A|| .

√
n

m
.

Then with high probability x̂ has the same support as x .
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Support recovery

Theorem

Let T be the support of x and suppose m ≥ |T | log n. Suppose
that

Assumption 1: min
i∈T
|xi | > 8σ

√
2 log n

Assumption 2: µ(A) .
1

log n
and ||A|| .

√
n

m
.

Then with high probability x̂ has the same support as x .

There is also a near-optimal bound on ‖Ax̂ − Ax‖2.

Problem: An optimal bound on ‖x̂ − x‖2 without
Assumption 1. (A sub-optimal bound is known (Dossal,
Tesson 2012)).
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Beyond compressed sensing

Theme 1: Subsampling. The amount of information
appears too small to reconstruct the signal.

Theme 2: Low dimensionality. The signal resides in a set
with small dimension in comparison to the ambient dimension.

Yaniv Plan Intro to CS



General theory for Gaussian measurements

Signal structure: x ∈ K ⊂ R
n.

y = Ax .
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General theory for Gaussian measurements

Theorem (M∗ estimate: Milman 1981, Pajor,Tomczak 1985,
Mendelson, Pajor, Tomczak 2007)

Consider a random subspace E in R
n of codimension m. Then with

high probability

diam(K ∩ E ) .
w(K )√

m
.

w(K ) is the mean width of K .
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Matrix completion


M1,1 M1,2 M1,3 M1,4

M2,1 M2,2 M2,3 M2,4

M3,1 M3,2 M3,3 M3,4

M4,1 M4,2 M4,3 M4,4

 , Mi ,j = How much user i likes movie j


? M1,2 ? M1,4

M2,1 ? M2,3 M2,4

M3,1 ? M3,3 M3,4

? M4,2 ? M4,4

 , Mi ,j = How much user i likes movie j

Rank-1 model:
aj = Amount of action in movie j
xi = How much user i likes action

Mi ,j = xi · aj
Rank-2 model:

bj = Amount of comedy in movie j
yi = How much user i likes comedy

Mi ,j = xi · aj + yi · bj
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Example 2: Sparse binary data

Example: Predicting heart attacks (10 year study).

• yi =

{
1 if patient i has heart attack in 10 year window

−1 otherwise

• ai = (cholesterol, weight, BMI, blood-test results, exercise habits...).

Sparsity: Only a few factors are significant.
Which ones?
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Riddle answer

Riddle: A sleeping dragon guards n locked treasure chests. s chests
are filled with gold and the other n − s are empty. You sneak into
the dragon’s lair carrying with you a large weighing machine. You
wish to discover which chest holds the gold. How many times do
you have to use the weighing machine?
Ans: Make m = O(s log(n/s)) measurements of the weight of a
random subset of chests. Reconstruct all weights using `1
minimization.

 1 1 0 1 0 0 1 0
0 1 0 0 1 0 0 0
1 0 0 0 1 1 1 1





0
100 kg

0
100 kg

0
0
0
0


=

 200 kg
100 kg

0 kg
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Riddle answer

Ans: Make m = O(s log(n/s)) measurements of the weight of a
random subset of chests. Reconstruct all weights using `1
minimization.

 1 1 0 1 0 0 1 0
0 1 0 0 1 0 0 0
1 0 0 0 1 1 1 1





0
100 kg

0
100 kg

0
0
0
0


=

 200 kg
100 kg

0 kg



Q: Does the above matrix satisfy any of the assumptions of the
theory we discussed?
A: No, but we can precondition the matrix by projecting onto the
space orthogonal to the all ones vector.
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Thank you!

yanivplan.com
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