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O(x) = 3x7 + 2x7 + 2x7 + 2x1x2 + 2x1x3 + 4x2x3  (See
Exercise 2.)

5. O(x) = 5x7 + 5x3 —4xix,
6. O(x) = 7x} +3x3 4 3x1x2

7. Let Q(x) = —2x7 — x3 + 4x, X, + 4x,x;. Find a unit vector

x in R? at which Q(x) is maximized, subject to x'x = 1.
[Hint: The eigenvalues of the matrix of the quadratic form
Q are 2, —1, and —4.]

12.

13.

Let A be any eigenvalue of a symmetric matrix A. Justify
the statement made in this section that m < A < M, where
m and M are defined as in (2). [Hint: Find an x such that
A = x"4x]

Let A be an n x n symmetric matrix, let M and m denote
the maximum and minimum values of the quadratic form
x’Ax, and denote corresponding unit eigenvectors by u; and
u,. The following calculations show that given any number ¢
between M and m, there is a unit vector x such that = x’4x.

8. Let O(x) = 7x7 + x3 + 7x3 — 8xyx2 — 4x1 X3 — 8x2%3. Verify that# = (1 — a)m + aM for some number o between
Find a unit vector x in R? at which Q(x) is maximized, 0 and 1. Then let x = /1 — au, + /ou;, and show that
subject to x'x = 1. [Hint: The eigenvalues of the matrix of x'x = 1 and x"Ax = 1.
the quadratic form Q are 9 and —3.]

9. Find the maximum value of Q(x) = 7x? + 3x3 — 2xx,, [M] In Exercises 14-17, follow the instructions given for Exer-
subject to the constraint x> + x = 1. (Do not go on to find  cises 3-0.

a vector where the maximum is attained.) 14. X1 + 3x153 + 30x1X4 + 3002X3 4 30X + X34
10. Find the maximum value of Q(x) = —3x7 + 5x3 — 2x X2,
15.
subject to the constraint x> + x7 = 1. (Do not go on to find 3x1Xp 4 5x1X3 4+ Ty x4 + Txox3 + 5x5%4 + 3x3%4
a vector where the maximum is attained.) 16. 4X12 — 6x1x3 — 10x;x3 — 10x1 x4 — 6x2X3 — 6X2X4 — 2X3X4
11. Suppose x is a unit eigenvector of a matrix A corresponding ~ 17. —6x7 — 10x3 — 13x7 — 13x7 — 4xx, — 4xyx3 — dx x4 +
to an eigenvalue 3. What is the value of x’Ax? 6x3x4
SOLUTIONS TO PRACTICE PROBLEMS
. . . 3 1 . .
z f 1. The matrix of the quadratic formis A = 1 3l Itis easy to find the eigenvalues,
. . 1/4/2 —1/4/2
4 and 2, and corresponding unit eigenvectors, /N2 and /2 . So the
1/v2 1/v2
4
=57 1/V2 —1/42
Eﬂ;"/:/ desired change of variable is x = Py, where P = /N2 /N2 . (A common
— 227 % 1/V2  1/32
g . . . . .
7 error here is to forget to normalize the eigenvectors.) The new quadratic form is

y'Dy = 4y + 2.

The maximum value of Q(x)
subject to x”x = 11is 4.

The maximum of Q(x) for x a unit vector is 4, and the maximum is attained at

1/3/2

the unit eigenvector [A common incorrect answer is ! This vector
& 1/v2 | 0]

maximizes the quadratic form y’Dy instead of Q(x).]

7.4 THE SINGULAR VALUE DECOMPOSITION

The diagonalization theorems in Sections 5.3 and 7.1 play a part in many interesting ap-

plications. Unfortunately, as we know, not all matrices can be factored as A = PDP!

with D diagonal. However, a factorization 4 = QDP~! is possible for any m x n
matrix A! A special factorization of this type, called the singular value decomposition,
is one of the most useful matrix factorizations in applied linear algebra.

The singular value decomposition is based on the following property of the ordinary

diagonalization that can be imitated for rectangular matrices: The absolute values of the
eigenvalues of a symmetric matrix A measure the amounts that A stretches or shrinks
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certain vectors (the eigenvectors). If Ax = Ax and ||x|| = 1, then
[Ax]| = [[Ax]| = [A[[|Ix]| = |A] (1

If A, is the eigenvalue with the greatest magnitude, then a corresponding unit eigenvec-
tor v; identifies a direction in which the stretching effect of A is greatest. That is, the
length of Ax is maximized when x = vy, and ||Av;|| = |A1[, by (1). This description of
vy and |A{| has an analogue for rectangular matrices that will lead to the singular value
decomposition.

4 11 14
8 7 =2
the unit sphere {x : ||x|| = 1} in R? onto an ellipse in R?, shown in Fig. 1. Find a unit
vector x at which the length || Ax|| is maximized, and compute this maximum length.

EXAMPLE 1 If4 = [

i| , then the linear transformation x > Ax maps

R%)

Multiplication
by A

A
(18, 6)

(3.-9

FIGURE 1 A transformation from R? to R?.

SOLUTION The quantity || Ax||> is maximized at the same x that maximizes || Ax||, and
| Ax||? is easier to study. Observe that

| Ax|? = (Ax)7 (Ax) = x"4T4Ax = x"(4T4)x
Also, A"A is a symmetric matrix, since (A74)7 = ATATT = ATA. So the problem now
is to maximize the quadratic form x” (A74)x subject to the constraint ||x|| = 1. By
Theorem 6 in Section 7.3, the maximum value is the greatest eigenvalue A; of A’A.

Also, the maximum value is attained at a unit eigenvector of A’A corresponding to A;.
For the matrix A in this example,

4 8 80 100 40
A= |11 7[2 1;_3}= 100 170 140
14 -2 40 140 200

The eigenvalues of A74 are A; = 360, 1, = 90, and A3 = 0. Corresponding unit eigen-
vectors are, respectively,

1/37] —2/3 2/3
vV = 2/3 , V= —1/3 , V3= —2/3
2/3 | 2/3 1/3

The maximum value of || Ax||* is 360, attained when x is the unit vector v;. The vector
Av; is a point on the ellipse in Fig. 1 farthest from the origin, namely,

4 11 14 1/3 18
Avy = g 7 2/3 | = 6
2/3
For [|x|| = 1, the maximum value of || Ax] is ||[Av|| = /360 = 6+/10. ]

Example 1 suggests that the effect of 4 on the unit sphere in R? is related to the
quadratic form x” (A”A)x. In fact, the entire geometric behavior of the transformation
X > AXx is captured by this quadratic form, as we shall see.
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FIGURE 2

THEOREM 9

The Singular Values of an m x n Matrix

Let Abe anm x n matrix. Then A7A is symmetric and can be orthogonally diagonalized.
Let {vy,...,v,} be an orthonormal basis for R” consisting of eigenvectors of ATA, and
let Ay, ..., A, be the associated eigenvalues of A”4. Then, for 1 <i <n,

2
[Avi|> = (Avi)"Av; = v] A"4v,
= ViT (Aivy) Since v; is an eigenvector of A4
= A Since v; is a unit vector )

So the eigenvalues of A’A are all nonnegative. By renumbering, if necessary, we may
assume that the eigenvalues are arranged so that

A=A ==22, =20

The singular values of A are the square roots of the eigenvalues of 474, denoted by
o1, ...,0,,and they are arranged in decreasing order. Thatis, 0; = +/A; for1 <i <n.
By equation (2), the singular values of A are the lengths of the vectors Avy, ..., Av,.

EXAMPLE 2 Let A be the matrix in Example 1. Since the eigenvalues of A’A are
360, 90, and 0, the singular values of A are

o1 = /360 =6+10, 07 =+v90=3v10, o03=0

From Example 1, the first singular value of A is the maximum of || Ax|| over all unit
vectors, and the maximum is attained at the unit eigenvector v;. Theorem 7 in Section
7.3 shows that the second singular value of A is the maximum of || Ax|| over all unit
vectors that are orthogonal to vy, and this maximum is attained at the second unit
eigenvector, v, (Exercise 22). For the v, in Example 1,

~2/3
411 14 3
AV2=[8 7 —2} _;ﬁ z[—9]

This point is on the minor axis of the ellipse in Fig. 1, just as Av; is on the major axis.
(See Fig. 2.) The first two singular values of A are the lengths of the major and minor
semiaxes of the ellipse. n

The fact that Av; and Av; are orthogonal in Fig. 2 is no accident, as the next theorem
shows.

Suppose {vi, ..., V,} is an orthonormal basis of R” consisting of eigenvectors of
ATA, arranged so that the corresponding eigenvalues of A74 satisfy A; > --- > A,,,
and suppose A has r nonzero singular values. Then {Avy,..., Av,} is an
orthogonal basis for Col 4, and rank 4 = r.

PROOF Because v; and A ;v; are orthogonal fori # j,
(Avi)T(Av;) =vI ATAv; =vI (A v;) =0

Thus {Avy, ..., Av,} is an orthogonal set. Furthermore, since the lengths of the vec-
tors Avy, ..., Av, are the singular values of A, and since there are r nonzero singular
values, Av; # 0 if and only if 1 <i <r. So Avy,..., Av, are linearly independent
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vectors, and they are in Col A. Finally, for any y in Col A—say, y = AXx— we can write
X =cVy + -+ cpV,, and
Yy=Ax=c1AVi + -+ ¢, AV + Crp1 AVepy + o0+ AV,
=ciAvi+ -+, AV, + 04 -+ 0

Thus y is in Span {Avy, ..., Av,}, which shows that {Avy,..., Av,} is an (orthogonal)
basis for Col A. Hence rank A = dimCol A = r. [ ]

— NUMERICAL NOTE

In some cases, the rank of 4 may be very sensitive to small changes in the entries
of A. The obvious method of counting the number of pivot columns in A does
not work well if A is row reduced by a computer. Roundoff error often creates
an echelon form with full rank.

In practice, the most reliable way to estimate the rank of a large matrix A
is to count the number of nonzero singular values. In this case, extremely small
nonzero singular values are assumed to be zero for all practical purposes, and the
effective rank of the matrix is the number obtained by counting the remaining
nonzero singular values.!

The Singular Value Decomposition

The decomposition of 4 involves an m x n “diagonal” matrix X of the form

D 0
x= [ 0 0:| <~ M — I TOWS G)

t

L— n — r columns

where D is an r x r diagonal matrix for some r not exceeding the smaller of m and n.
(If r equals m or n or both, some or all of the zero matrices do not appear.)

The Singular Value Decomposition

Let A be an m x n matrix with rank . Then there exists an m X n matrix X as
in (3) for which the diagonal entries in D are the first r singular values of 4,
0] > 0y > --- > 0, > 0, and there exist an m X m orthogonal matrix U and an
n x n orthogonal matrix V' such that

A=UxVT

Any factorization 4 = U VT, with U and V orthogonal, ¥ as in (3), and positive
diagonal entries in D, is called a singular value decomposition (or SVD) of A. The
matrices U and V are not uniquely determined by A, but the diagonal entries of X are
necessarily the singular values of A. See Exercise 19. The columns of U in such a
decomposition are called left singular vectors of A, and the columns of V' are called
right singular vectors of A.

'In general, rank estimation is not a simple problem. For a discussion of the subtle issues involved, see

Philip E. Gill, Walter Murray, and Margaret H. Wright, Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA: Addison-Wesley, 1991), Sec. 5.8.
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PROOF LetA; and v; be as in Theorem 9, so that {Avy, ..., Av,} is an orthogonal basis

for Col A. Normalize each Av; to obtain an orthonormal basis {uy, ..., u,}, where
1
u, = —AV,' = —AV,'
[ Av; || o

and

Av; = oju; (I1<i<r) “4)
Now extend {uy, ..., u,} to an orthonormal basis {uy, ..., u,} of R™, and let

U=[u uw - u,] and V=[vy v - V]

By construction, U and V' are orthogonal matrices. Also, from (4),
AV=[AV1 cee Av, 0 .- 0]:[0’1111 e oyu. 0 .- ()]

Let D be the diagonal matrix with diagonal entries o7, ..., 0,, and let X be as in
(3) above. Then

01 0
(o)) 0
US=[u w - u,]
0 o,
0 |0
= [Ulul EERN o | & 0 e 0]
= AV
Since V is an orthogonal matrix, USVT = AVVT = A. [ |

The next two examples focus attention on the internal structure of a singular value
decomposition. An efficient and numerically stable algorithm for this decomposition
would use a different approach. See the Numerical Note at the end of the section.

EXAMPLE 3 Use the results of Examples 1 and 2 to construct a singular value
4 11 14 i|

decomposition of A = [ 3 7 s

SOLUTION A construction can be divided into three steps.

Computing an SVD Step 1. Find an orthogonal diagonalization of ATA. That is, find the eigenvalues of
7-10 AA and a corresponding orthonormal set of eigenvectors. If A had only two columns,
the calculations could be done by hand. Larger matrices usually require a matrix pro-
gram.2 However, for the matrix A here, the eigendata for A”4 are provided in Example 1.

Step 2. Set up V and X. Arrange the eigenvalues of A’A in decreasing order. In
Example 1, the eigenvalues are already listed in decreasing order: 360, 90, and 0. The
corresponding unit eigenvectors, vy, v, and vs, are the right singular vectors of A. Using
Example 1, construct

1/3 =2/3 2/3

V:[Vl \&) V3]: 2/3 —1/3 —2/3
2/3 2/3 1/3

2See the Study Guide for software and graphing calculator commands. MATLAB, for instance, can produce
both the eigenvalues and the eigenvectors with one command, eig.
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The square roots of the eigenvalues are the singular values:
01 =6V10, 02=3V10, 0’320

The nonzero singular values are the diagonal entries of D. The matrix ¥ is the same
size as A, with D in its upper left corner and with 0’s elsewhere.

Dz[é«/ﬁ 0 } £ (D 01:[6@ 0 o}

0 3410 0 3710 0
Step 3. Construct U. When A has rank r, the first 7 columns of U are the normalized
vectors obtained from Avy,..., Av,. In this example, A has two nonzero singular

values, so rank A = 2. Recall from equation (2) and the paragraph before Example
2 that ||Avy|| = oy and ||Av,|| = 0,. Thus

u —iAv 1 [18}_ 3/4/10
T T s10L 6 1/4/10
u—iAv— 1 31 1/4/10
2T T 3 0L T | —3/4/10
Note that {uy, uy} is already a basis for R2. Thus no additional vectors are needed for
U,and U = [u; wu,]. The singular value decomposition of A is

s [3/@ 1/«/%} [6@ 0 o} _;ﬁ _?ﬁ Z;

1/v/10 =3/4/10 0 3410 0 2/3 —2/3  1/3
1 ) )
U )y | |
1 —1
EXAMPLE 4 Find a singular value decompositionof 4 = | =2 2
2 =2
SOLUTION First, compute A7A = |:_g _g] The eigenvalues of A’4 are 18 and 0,

with corresponding unit eigenvectors

| V2 V2
vV = —1/\/5, V) = 1/«/5

These unit vectors form the columns of V':

_ o1V2 12
ret V“‘[—l/ﬁ l/fz}

The singular values are o; = +/18 = 3+/2 and 0> = 0. Since there is only one nonzero
singular value, the “matrix” D may be written as a single number. That is, D = 3+/2.
The matrix X is the same size as A, with D in its upper left corner:

D 0 32 0
YX=| 0 0]= 0 0
0 0 0 0
To construct U, first construct Av; and Av,:
2/\2 0
Avi=| —4/J2 |, Av=|0
4/32 0
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FIGURE 3

As a check on the calculations, verify that | Av,|| = o] = 3+/2. Of course, Av, = 0
because ||Av;2|| = o2 = 0. The only column found for U so far is

. 1/3
u = —AV1 = —2/3
32 2/3

The other columns of U are found by extending the set {u; } to an orthonormal basis for
R3. In this case, we need two orthogonal unit vectors u, and us that are orthogonal to
u;. (See Fig. 3.) Each vector must satisfy ulTx = 0, which is equivalent to the equation
X1 — 2x, + 2x3 = 0. A basis for the solution set of this equation is

2 -2
W = 1 , Wy =
0 1

(Check that w; and w, are each orthogonal to u;.) Apply the Gram—Schmidt process
(with normalizations) to {w;, w,}, and obtain

2/5 —2/+/45
wm=|1//5]. w= 4/:/45
0 5//45

Finally,set U = [u; w, u3],take ¥ and V7 from above, and write

1 -1 1/3  2/v5  —2/445 342 0

A=| -2 2|=|-2/3 1/J/5 4/J45 | 0 o [zg _i%_ﬂ
2 -2 2/3 0 5//45 0 0

| ]

Applications of the Singular Value Decomposition

The SVD is often used to estimate the rank of a matrix, as noted above. Several other nu-
merical applications are described briefly below, and an application to image processing
is presented in Section 7.5.

EXAMPLE 5 (The Condition Number) Most numerical calculations involving an
equation Ax = b are as reliable as possible when the SVD of A is used. The two
orthogonal matrices U and V' do not affect lengths of vectors or angles between vectors
(Theorem 7 in Section 6.2). Any possible instabilities in numerical calculations are
identified in X. If the singular values of A are extremely large or small, roundoff errors
are almost inevitable, but an error analysis is aided by knowing the entries in X and V.

If A is an invertible n x n matrix, then the ratio o, /0, of the largest and smallest
singular values gives the condition number of A. Exercises 41-43 in Section 2.3
showed how the condition number affects the sensitivity of a solution of Ax = b to
changes (or errors) in the entries of A. (Actually, a “condition number” of A can be
computed in several ways, but the definition given here is widely used for studying
Ax =Db.) [ |

EXAMPLE 6 (Bases for Fundamental Subspaces) Given an SVD for an m X n
matrix A4, letuy, ..., u,, be the left singular vectors, vy, . . ., v, the right singular vectors,
and o1, ..., 0, the singular values, and let r be the rank of A. By Theorem 9,

{uy,...,u} 5)
is an orthonormal basis for Col A.



The fundamental subspaces in

Example 4.

THEOREM

7.4 The Singular Value Decomposition 421

Recall from Theorem 3 in Section 6.1 that (Col A)* = Nul A”. Hence

{Wr41,..., 0} (6)

is an orthonormal basis for Nul A7
Since ||Av;|| =o0; for 1 <i <n, and o; is 0 if and only if i > r, the vectors
Vr4+1,...,V, span a subspace of Nul A of dimension n —r. By the Rank Theorem,

dim Nul A = n — rank A. It follows that

Vedt, o V) )

is an orthonormal basis for Nul A, by the Basis Theorem (in Section 4.5).
From (5) and (6), the orthogonal complement of Nul AT is Col A. Interchanging A
and A7, note that (Nul A)J- = Col AT = Row A. Hence, from (7),

{Vi, ..., V,} )

is an orthonormal basis for Row A.

Figure 4 summarizes (5)—(8), but shows the orthogonal basis {oju, ..., o,u,} for
Col A instead of the normalized basis, to remind you that Av; = o;u; for 1 <i <r.
Explicit orthonormal bases for the four fundamental subspaces determined by A are
useful in some calculations, particularly in constrained optimization problems. [ ]

Multiplication

/by_A\t

E—

FIGURE 4 The four fundamental subspaces and the
action of A.

The four fundamental subspaces and the concept of singular values provide the final
statements of the Invertible Matrix Theorem. (Recall that statements about A7 have
been omitted from the theorem, to avoid nearly doubling the number of statements.)
The other statements were given in Sections 2.3, 2.9, 3.2, 4.6, and 5.2.

The Invertible Matrix Theorem (concluded)

Let A be an n x n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

u. (Col A)* = {0}.
v. (NulA)+ =R".
w. Row 4 = R”.

x. A has n nonzero singular values.
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EXAMPLE 7 (Reduced SVD and the Pseudoinverse of A) When X contains rows or
columns of zeros, a more compact decomposition of A is possible. Using the notation
established above, let r = rank A, and partition U and V into submatrices whose first
blocks contain r columns:

U=[U, U,-], whereU, =[u --- u,]
V=I[V, Vo], whereV,=1[v; -+ V,]

Then U, is m x r and V, is n x r. (To simplify notation, we consider U,,_, or V,_,
even though one of them may have no columns.) Then partitioned matrix multiplication

shows that
D 0 VT
A=[U U, " |=UDvV! 9
| ][0 0][%} o ®

This factorization of A is called a reduced singular value decomposition of A. Since
the diagonal entries in D are nonzero, D is invertible. The following matrix is called
the pseudoinverse (also, the Moore-Penrose inverse) of A:

AT =v.p7'u’ (10)

Supplementary Exercises 12—14 at the end of the chapter explore some of the properties
of the reduced singular value decomposition and the pseudoinverse. [ |

EXAMPLE 8 (Least-Squares Solution) Given the equation Ax = b, use the pseu-
doinverse of A in (10) to define

x=ATw=V,D7'U™D
Then, from the SVD in (9),
A% = (U, DVI)(V,D™'Ub)
= U,~DD_1UrTb Because V'V, = I,
=UU'b
It follows from (5) that U, U b is the orthogonal projection b of b onto Col A. (See
Theorem 10 in Section 6.3.) Thus X is a least-squares solution of Ax = b. In fact, this X

has the smallest length among all least-squares solutions of Ax = b. See Supplementary
Exercise 14. u

— NUMERICAL NOTE

Examples 1-4 and the exercises illustrate the concept of singular values and
suggest how to perform calculations by hand. In practice, the computation of
ATA should be avoided, since any errors in the entries of A are squared in the
entries of A”A. There exist fast iterative methods that produce the singular values
and singular vectors of A accurately to many decimal places.

Further Reading

Horn, Roger A., and Charles R. Johnson, Matrix Analysis (Cambridge: Cambridge
University Press, 1990).

Long, Cliff, “Visualization of Matrix Singular Value Decomposition.” Mathematics
Magazine 56 (1983), pp. 161-167.
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Moler, C. B., and D. Morrison, “Singular Value Analysis of Cryptograms.” Amer. Math.
Monthly 90 (1983), pp. 78-87.

Strang, Gilbert, Linear Algebra and Its Applications, 4th ed. (Belmont, CA: Brooks/
Cole, 2005).

Watkins, David S., Fundamentals of Matrix Computations (New York: Wiley, 1991),
pp- 390-398, 409-421.

PRACTICE PROBLEM

Given a singular value decomposition, A = UV, find an SVD of A”. How are the
singular values of 4 and A7 related?

7.4 EXERCISES

Find the singular values of the matrices in Exercises 1-4. 40 —78 .47 7.10 0 0
A= 37 —-33 -.87 0 310 0
L|ro 2 | 0 —84 —52 —.16 0 0 0
0 -3 0 0
30 —.51 —.81
NG 1 V3 2 x| .76 .64 —.12
3. 4. .58 —.58 .58
0 Ve 0 3
a. What is the rank of A?
Find an SVD of each matrix in Exercises 5-12. [Hint: In b. Use this decomposition of A, with no calculations, to
-1/3 2/3 2/3 write a basis for Col A and a basis for Nul A. [Hint: First
Exercise 11, one choice for U is 2/3 —=1/3 2/3|. In write the columns of V']
2/3  2/3 -1/3 16. Repeat Exercise 15 for the following SVD of a 3 x 4 matrix
Exercise 12, one column of U can be —2/\/6 N —.86 —.11 —.50 12.48 0 0 0
1/6 A= 31 .68 —.67 0 634 0 O
41 =73 =55 0 0 0 0
(-3 0 [—2 0 .66 —03 —35 .66
5. 0O 0 6. 0 —1 « —.13 -90 -39 —-.13
B B .65 .08 —.16 —.73
; M2 _1:| g M2 3:| —34 42 -84 —.08
L2 2 Lo 2 In Exercises 17-24, A is an m X n matrix with a singular value
_ _ decomposition A = UXVT, where U is an m x m orthogonal
7 1 4 =2 matrix, X is an m x n “diagonal” matrix with r positive entries
9 0 0 10. |2 ~1I and no negative entries, and V' is an n x n orthogonal matrix.
LS 3 L0 O Justify each answer.
r—3 1 ! 1 17. Suppose A is square and invertible. Find a singular value
11. 6 -2 12. 1 decomposition of A~
L 6 2 | —1 1 18. Show that if A is square, then | det A| is the product of the

singular values of A.
3 2

13. Findthe SVDof 4 = |:2 3 _

§:| [Hint: Work with AT ] 19. Show that the columns of V are eigenvectors of A”A, the

columns of U are eigenvectors of AAT, and the diagonal

14. In Exercise 7, find a unit vector x at which Ax has maximum entries of 3 are th‘; singular ;/alues of A. [Hint: Use the
length. SVD to compute A°A and AA".]

20. Show that if A is an n X n positive definite matrix, then an
15. Suppose the factorization below is an SVD of a matrix A, orthogonal diagonalization 4 = PDPT is a singular value
with the entries in U and V rounded to two decimal places. decomposition of A4.
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21.

22,

23.

24,

25.

Show that if P is an orthogonal m x m matrix, then PA has
the same singular values as A.

Justify the statement in Example 2 that the second singular
value of a matrix A is the maximum of ||Ax| as x varies
over all unit vectors orthogonal to v;, with v; a right singular
vector corresponding to the first singular value of A. [Hint:
Use Theorem 7 in Section 7.3.]

LetU =[u; --- uw,]andV =[v,
u; and v; are as in Theorem 10. Show that

A =owvl +oowvl +---+ou,v7 .
Using the notation of Exercise 23, show that A™u; = o;v;
forl < j <r =rank 4.

Let T : R" — R™ be a linear transformation. Describe how
to find a basis B for R” and a basis C for R” such that the
matrix for T relative to B and C is an m x n “diagonal”
matrix.

[M] Compute an SVD of each matrix in Exercises 26 and 27.
Report the final matrix entries accurate to two decimal places. Use
the method of Examples 3 and 4.

29.

M —18 13 -4 4
2 19 —4 12
26. A= —14 11 —12 8
. -2 21 4 8
v, |, where the 6 -8 —4 5 —4
2 7 -5 -6 4
WA= 5 0 8 2 2
-1 -2 4 4 -8
28. [M] Compute the singular values of the 4 x 4 matrix in

Exercise 9 in Section 2.3, and compute the condition number
(o3} / Oy4.
[M] Compute the singular values of the 5 x 5 matrix in Ex-

ercise 10 in Section 2.3, and compute the condition number
01/0s.

SOLUTION TO PRACTICE PROBLEM

If A=UXVT, where ¥ is m xn, then AT = (VT)TSTUT = VETUT. This is an
SVD of AT because V and U are orthogonal matrices and X7 is an n x m “diagonal”
matrix. Since ¥ and X7 have the same nonzero diagonal entries, 4 and A” have the
same nonzero singular values. [Note: If A is 2 x n, then AA” is only 2 x 2 and its
eigenvalues may be easier to compute (by hand) than the eigenvalues of A7A.]

7.5  APPLICATIONS TO IMAGE PROCESSING AND STATISTICS

The satellite photographs in this chapter’s introduction provide an example of multidi-
mensional, or multivariate, data—information organized so that each datum in the data
set is identified with a point (vector) in R”. The main goal of this section is to explain a
technique, called principal component analysis, used to analyze such multivariate data.
The calculations will illustrate the use of orthogonal diagonalization and the singular
value decomposition.

Principal component analysis can be applied to any data that consist of lists of
measurements made on a collection of objects or individuals. For instance, consider a
chemical process that produces a plastic material. To monitor the process, 300 samples
are taken of the material produced, and each sample is subjected to a battery of eight
tests, such as melting point, density, ductility, tensile strength, and so on. The laboratory
report for each sample is a vector in R¥, and the set of such vectors forms an 8 x 300
matrix, called the matrix of observations.

Loosely speaking, we can say that the process control data are eight-dimensional.
The next two examples describe data that can be visualized graphically.

EXAMPLE 1 Anexample of two-dimensional data is given by a set of weights and
heights of N college students. Let X; denote the observation vector in R that lists the
weight and height of the jth student. If w denotes weight and / height, then the matrix



