- Prove finite state irreducible MC has unique stationary dist.

- Talk about why we care about stationary dist.

- Ask about intuition for time reversal.

Time Reversal

Theorem: Given an MC \((X_n)_{n \geq 0}^N\) w/ stationary dist \(\pi\) & \(P(X_0 = i) = \pi_i\), let \(Y_n = X_{N-n}\).

Then \((Y_n)_{n \geq 0}^N\) is a MC w/ stationary dist \(\pi\) and transition probs \(Q_{ij} = \frac{P_{ji} \pi_j}{\pi_i}\).

Proof:

Claim 1: \(Y_n\) is MC.

We need to show Markov property:

\[P(Y_n = i | Y_{n-1} = j, Y_{n-2} = k, \ldots) = P(Y_n = i | Y_{n-1} = j) \]

\[\text{RHS} = P(X_{N-n} = i | X_{N-n+1} = j) \]

\[\text{LHS} = P(X_{N-n} = i | X_{N-n+1} = j, X_{N-n+2} = k, \ldots) \]

\[= \frac{P(X_{N-n+2} = k, \ldots | X_{N-n} = i, X_{N-n+1} = j) \cdot P(X_{N-n+1} = i | X_{N-n+2} = k, \ldots)}{P(X_{N-n+1} = k, \ldots | X_{N-n} = i, X_{N-n+1} = j)} \]

\[= \text{RHS}, \]

Claim 2: Transition probs:

\[Q_{ij} = P(Y_n = j | Y_{n-1} = i) = P(X_{N-n} = j | X_{N-n+1} = i) \]
\[P(X_{n+1} = i \mid X_n = j) \cdot P(X_n = j) \]
\[= P_{j,i} \cdot \frac{P_{i,j}}{\pi_i} \]

Since \(X_n \) starts in stationary dist. If it didn’t we wouldn’t have time homogeneity.

Claim 3: \(\pi \) is stationary for \(\pi \) if
\[
\text{row sum} \rightarrow 1
\]

Indeed \[
(\pi \cdot Q)j = \sum_i P_{j,i} \pi_i = \sum_i \frac{\pi_j}{\pi_i} \pi_i = \pi_j \cdot 1 = \pi_j
\]
\[\Rightarrow \pi \cdot Q = \pi. \]

Def. A time reversible MC has \(P_{ij} = Q_{ij} \)

Proof Let \(X_n \) be an irreducible MC. If \(\exists \, x = (x_i) \)
\[\sum_i x_i = 1 \quad \text{and} \quad x_i P_{ij} = x_j P_{ji} \]
then \(x = \pi \) is the stationary dist.

Pf: \[
(xP)j = \sum_i x_i P_{ij} = \sum_i x_j P_{ji} = x_j \quad \Rightarrow \quad xP = x.
\]

Also, note \(\sum_i x_i = 1 \quad \forall \, i. \) (why?)