Recall: \(P_k = \lim_{t \to \infty} P_k(t) \) (well defined for irreducible, pos. recurrent CTMC)

Today: Calculate \(\{P_k\} \) for birth-death processes

Q: What are \(P_k \) for rate \(\lambda \) Poisson process \(\Lambda \)?
A: \(\Lambda(t) \to \infty \) as \(t \to \infty \). Thus \(\lim_{t \to \infty} P_k(t) = 0 \).
\(\Rightarrow \) \(\sum_{k=0}^\infty P_k = 0 \).

Why? Null recurrent (and not irreducible).

Q: What are \(P_k \) for birth-death process w/ non-zero death rates \(\mu_1, \mu_2, \ldots \) \((\mu_0 = 0) \)

Recall:
\[V_j = \lambda_j + \mu_j \]
Rate leave \(j \) = Rate enter \(j \)
\[V_j P_j = \sum_{k \neq j} q_{kj} P_k \]
\[q_{kj} = \begin{cases} \lambda_k & j = k+1 \\ \mu_k & j = k-1 \\ 0 & \text{else} \end{cases} \]
\[= q_{j-1,j} P_{j-1} + q_{j+1,j} P_{j+1} \]
\[= \lambda_{j-1} P_{j-1} + \mu_{j+1} P_{j+1} \]

\[j = 0 : \quad \lambda_0 P_0 = \mu_1 P_1 \]
\[j = 1 : \quad (\lambda_1 + \mu_1) P_1 = \lambda_0 P_0 + \mu_2 P_2 \]
\[j = 2 : \quad (\lambda_2 + \mu_2) P_2 = \lambda_1 P_1 + \mu_3 P_3 \]
\[\vdots \]
\[j = n : \quad (\lambda_n + \mu_n) P_n = \lambda_{n-1} P_{n-1} + \mu_{n+1} P_{n+1} \]
Solve: \(j = 0 \) : \(P_0 = \frac{\lambda_0}{\mu_1} P_0 \)

Plug \(j = 0 \) into \(j = 1 \) \(\Rightarrow \) \(\lambda_1 P_1 = \mu_2 P_2 \)

\(\Rightarrow P_2 = \frac{\lambda_1}{\mu_2}. P_1 = \frac{\lambda_1}{\mu_2}. \frac{\lambda_0}{\mu_1}. P_0 \)

Similarly, \(P_3 = \frac{\lambda_2}{\mu_3}. \frac{\lambda_1}{\mu_2}. \frac{\lambda_0}{\mu_1}. P_0 \)

and \(P_n = \Gamma_n P_0 \) where \(\Gamma_n = \frac{\lambda_{n-1}}{\mu_n} \cdot \frac{\lambda_{n-2}}{\mu_{n-1}} \cdots \frac{\lambda_0}{\mu_1} \)

Now, use \(\sum_{n=0}^{\infty} P_n = P_0 + P_1 \sum_{n=1}^{\infty} \Gamma_n \)

\(\Rightarrow P_0 = \frac{\Gamma_0}{1 + \sum_{n=1}^{\infty} \Gamma_n} \)

\(P_n = \Gamma_n P_0 = \frac{\Gamma_n}{1 + \sum_{n=1}^{\infty} \Gamma_n} \)

Example:

Join line

at rate \(\lambda \)

Consider a single server who receives customers at a rate \(\lambda \) Poisson process.

Service times are \(\text{Exp}(\mu) \)

\(\{X(t) : t \geq 0\} = \# \) of customers in queue at time \(t \)

(in service & waiting)

This is called an \(M/M/1 \) queue.

It is a birth-death process w/ \(\lambda_n = \lambda, n \geq 0, \mu_n = \mu, n \geq 1 \) \((\mu_0 = 0) \).

In machinery above, \(\Gamma_n = \frac{\lambda^n}{\mu^n} \) so
Case 1: \(m > \lambda \) so \(\frac{\lambda}{m} < 1 \)

Then, \(\sum_{n=1}^{\infty} r_n = \sum_{n=1}^{\infty} \left(\frac{\lambda}{m} \right)^n = \frac{\lambda}{m - \lambda} = \frac{1}{1 - \frac{\lambda}{m}} \)

Thus, \(P_0 = 1 - \frac{\lambda}{m} \) & \(P_n = \left(\frac{\lambda}{m} \right)^n \left(1 - \frac{\lambda}{m} \right) \)

Case 2: \(m \geq \lambda \), \(\sum_{n=1}^{\infty} r_n = \infty \Rightarrow P_n = 0 \ \forall n. \)

Q: Why?
A: \(\lambda > m \)

\(\lambda = m \) Null recurrent, just like symmetric 1-d random walk.