Poisson processes (formal definitions).

Def 1
Let \(X_1, X_2, \ldots \sim \text{Exp}(\lambda) \).

\[X_i = \text{time it takes next event to occur.} \]

Poisson process w/ rate \(\lambda \):
\[N(t) = \# \text{ of events that have occurred by time } t. \]
i.e. \(N(t) \geq k \iff X_1 + X_2 + \ldots + X_k \leq t \)
\[\text{kth event occurred by time } t. \]

Second def of Poisson process needs:

Def (little o notation) We say a fn \(f \) is \(o(h) \) if \(\lim_{h \to 0} \frac{f(h)}{h} = 0 \).

Ex) \(f(h) = h^2 \) so \(\frac{h^2}{h} = h \to 0 \)

Ex) \(e^h = 1 + h + o(h) \)

\[\text{why? Taylor series: } e^h = 1 + h + \frac{h^2}{2} + \frac{h^3}{3!} + \ldots \]

Ex) \(e^{h+h} = (1+h+o(h))(1+h) = 1 + 2h + o(h) \)

Def 2 (Poisson process) A counting process \(\{N(t); t \geq 0\} \)
\[\text{is a rate } \lambda \text{ Poisson process if:} \]

(i) \(N(0) = 0 \)

(ii) Independ. increments i.e. \(\frac{N(t)-N(s)}{t-s} \) is indep of
\[\# \text{ of events in } [s, t] \]
\[
\frac{N(w) - N(u)}{\# \text{ of events in } [u, v]}
\]

For \(t \geq u \geq v \).

(iii) \(P(N(\tau + t) - N(\tau) = 1) = \lambda t + o(t) \)

(iv) \(P(N(\tau + t) - N(\tau) \geq 2) = o(t) \)

Prop: Both definitions are equivalent:

(2) \(N(t) - N(0) \sim \text{Poisson} (\lambda(t-0)) \)

Pf: See text.

Q: Let \(X \sim \text{Poisson}(\lambda) \) and \(Y \sim \text{Poisson}(\beta) \) be independent. What is the distribution of \(X + Y \)?

A: Consider a rate-1 Poisson process \(\{N(t) : t \geq 0\} \).

Let \(X = N(\alpha) - N(\alpha - \lambda) \sim \text{Poisson}(\lambda) \)

\(Y = N(\beta + \alpha) - N(\alpha) \sim \text{Poisson}(\beta + \alpha - \lambda) = \text{Poisson}(\beta) \)

since increments are independent.

\(X + Y = N(\alpha) + N(\beta + \alpha) - N(\alpha) = N(\beta + \alpha) \sim \text{Poisson}(\beta + \alpha) \).

Prop: Let \(\{N_1(t) : t \geq 0\} , \{N_2(t) : t \geq 0\} \) be independent Poisson processes with rates \(\lambda_1 \) and \(\lambda_2 \).

Let \(N(t) = N_1(t) + N_2(t) \). Then \(\{N(t) : t \geq 0\} \) is a rate \(\lambda_1 + \lambda_2 \) Poisson process.

Pf: We need to show that properties (i), (ii), (iii), (iv) of Def 2 hold:

(i): \(N(0) = N_1(0) + N_2(0) = 0 \)
(iii) Write \(\Delta N = N(t + h) - N(t) \)

\[
P(\Delta N = 1) = P(\Delta N_1 + \Delta N_2 = 1) = P(\Delta N_1 = 0) \cdot P(\Delta N_2 = 1) + P(\Delta N_1 = 1) \cdot P(\Delta N_2 = 0)
\]

\[
= \left(1 - P(\Delta N_1 > 0)\right) \cdot P(\Delta N_2 = 1)
+ \left(1 - P(\Delta N_2 > 0)\right) \cdot P(\Delta N_1 = 1)
\]

\[
= \begin{pmatrix}
1 - \lambda_1 \cdot h + o(h) \\
1 - \lambda_2 \cdot h + o(h)
\end{pmatrix}
\begin{pmatrix}
\lambda_2 \cdot h + o(h) \\
\lambda_1 \cdot h + o(h)
\end{pmatrix}
\]

\[
= \lambda_2 h + \lambda_1 h + o(h)
\]

(iii) \(P(\Delta N = 0) = P(\Delta N_1 = 0) \cdot P(\Delta N_2 = 0) = (1 - \lambda_1 \cdot h + o(h))
\]

\[
(1 - \lambda_2 \cdot h + o(h))
\]

\[
= 1 - (\lambda_1 + \lambda_2) h + o(h)
\]

\[\implies P(\Delta N \geq 2) = 1 - P(\Delta N = 1) - P(\Delta N = 0)
\]

\[
= 1 - \left[(\lambda_1 + \lambda_2) h + o(h)\right] - \left[1 - (\lambda_1 + \lambda_2) h + o(h)\right]
\]

\[
= o(h)
\]