Math 303 Assignment 4: Due Friday, February 9 at start of class

I. Problems to be handed in:

- 1. Is it possible for a branching process to be reversible? If so, what must ξ satisfy? (Recall, each individual has a number of children distributed as a random independent copy of ξ .)
- 2. Let $(X_0, X_1, \ldots,)$ be a reversible Markov chain with state space S, transition matrix P, and stationary distribution π . Show that if the chain is started with initial distribution π , then for any n and any $s_{i_0}, s_{i_1}, \ldots, s_{i_n} \in S$, we have

$$P(X_0 = s_{i_0}, X_1 = s_{i_1}, \dots, X_n = s_{i_n}) = P(X_n = s_{i_0}, X_{n-1} = s_{i_1}, \dots, X_0 = s_{i_n})$$

In other words, the chain is equally likely to make a tour through the states $s_{i_0}, s_{i_1}, \ldots, s_{i_n}$ in forwards or backwards order.

- 3. Determine the generating function $G_X(s) = Es^X$, for each of the following random variables.
 - (a) $X \sim Bernoulli(p)$, i.e., P(X = 1) = p, P(X = 0) = 1 p.
 - (b) $X \sim Binomial(n, p)$.
 - (c) $X \sim Poisson(\mu)$, i.e., $P(X = j) = e^{-\mu} \mu^j / j!$ for j = 0, 1, 2, ...
 - (d) $X \sim Geometric(p)$, i.e, $P(X = j) = (1 p)^{j-1}p$ for j = 1, 2, ...
 - (e) X = A + B + C where $A \sim Bernoulli(p), B \sim Binomial(n, p), C \sim Poisson(\mu).$
- 4. Let X_1, X_2, \ldots be Geometric(p) random variables, let Y_1, Y_2, \ldots be $Poisson(\mu)$ random variables, and let $M \sim Binomial(n, p)$. Assume all random variables above are independent of each other. Now let $N = Y_1 + Y_2 + \ldots + Y_M$. Let $X = X_1 + X_2 + \ldots + X_N$. Find the generating function of X.
- 5. Consider a branching process in which the children of an individual are a copy of the random variable ξ , where ξ satisfies:

$$P(\xi = 0) = \alpha$$
, $P(\xi = 1) = 0$, $P(\xi = 2) = \beta$, $P(\xi = 3) = 1 - \alpha - \beta$.

- (a) If $\alpha = \beta = 1/3$, and the population starts with **10 individuals**, find the probability of eventual extinction.
- (b) Again with $\alpha = \beta = 1/3$, and with a population starting with 10 individuals, find the probability of extinction within 3 generations, i.e. $P(Z_3 = 0)$.
- (c) Under the constraint that $E\xi = 2$, find α and β to maximize the probability of extinction.
- **II. Recommended problems:** These provide additional practice but are not to be handed in. Textbook Chapter 4: Exercises 64, 66, 71, 73.