Math 303 Assignment 3: Due Wednesday, January 31 at start of class

I. Problems to be handed in:

- 1. Let C be a communicating class of a Markov chain. We say that C is closed if $P_{ij} = 0$ for all states $i \in C$ and $j \notin C$. In other words, a communicating class is closed if there is no escape from that class.
 - (a) Show that a finite communicating class C is closed if and only if its states are recurrent.
 - (b) Find an example of a Markov chain with no closed communicating class.
- 2. Textbook Chapter 4 Exercise 33.
- 3. Textbook Chapter 4 Exercise 36 (a), (b), (c) with $P_{0,0} = 0.3$ and $P_{0,1} = 0.7$.
- 4. Consider the random walk on the integers $\{0, 1, 2, 3\}$ which takes steps +1 (to the right) with probability $\frac{1}{3}$ and -1 (to the left) with probability $\frac{2}{3}$, except at the endpoints where there is reflection; this means that a step from 1 to 0 is always followed by a step from 0 to 1, and a step from 2 to 3 is always followed by a step from 3 to 2.
 - (a) Determine the transition matrix for this Markov chain.
 - (b) Argue that the chain is time reversible without considering the detailed balance equations.
 - (c) What is the stationary distribution?
 - (d) Suppose the Markov chain has been running for a long time. What fraction of time has it spent in state 0?
- 5. A bishop starts at the bottom left of a chess board and performs random moves. At each stage, she picks one of the available legal moves with equal probability, independently of the earlier moves. Let X_n be her position after n moves. What is the mean number of moves before she returns to her starting square?

Hint: Read and apply Example 4.36.

6. Let X_n be a Markov chain with state space $\{0, 1, 2, ...\}$ with transition probabilities

$$p_{i,i+1} = a_i$$
 and $p_{i,0} = 1 - a_i$

for all state *i*, where a_i are numbers between 0 and 1. Let $b_0 = 1$ and $b_i = a_0 a_1 \cdots a_i$. Show that the chain is

- (a) recurrent if and only if $\lim_{i\to\infty} b_i = 0$,
- (b) positive recurrent if and only if $\sum_{i=0}^{\infty} b_i < \infty$.
- (c) Find the stationary distribution in the positive recurrent case.

II. Recommended problems: These provide additional practice but are not to be handed in. Chapter 4: 32, 42, 62, 47, 57, 68b.

- 7. (a) Prove that periodicity is a class property: If i, j are communicating states of a Markov chain, then their periods satisfy $d_i = d_j$. Hint: Show that d_i divides d_j .
 - (b) Let i be a state of a Markov chain. Prove that the following statements are equivalent:

(1) The period of i is d,

(2) There is a positive integer N such that for each n > N we have $P_{i,i}^n > 0$ if and only if d divides n.