Math 608D, Assignment 1: Due Friday, Feb 2

1. We show that Gaussian concentration extends, in an important special case, to sub-Gaussian variables. Let X be a vector with independent random entries X_1, X_2, \ldots, X_n . Suppose for each i

$$EX_i = 0, EX_i^2 = 1, \|X_i\|_{\Psi_2} \le 10.$$

Show that the following hold:

- (a) $||||X||_2||_{\Psi_2} \leq C\sqrt{n}$. (This part is not so exciting.)
- (b) $||||X||_2 \sqrt{n}||_{\Psi_2} \leq C$. (This part matches Gaussian concentration, is tricky to prove, and was the first step in a publication that arose from this class last year.)
- (c) If you replace the assumption $||X_i||_{\Psi_2} \leq 10$ with $||X_i||_{\Psi_2} \leq \alpha$ for some $\alpha > 0$, then how well can you bound $|||X||_2 \sqrt{n}||_{\Psi_2}$? (This part is open-ended, a tight result could possibly lead to a good conference paper.)
- 2. Prove the following version of Bernstein inequality:

Theorem 0.1 (Bernstein inequality for bounded random variables) Let X_1, X_2, \ldots, X_N be independent, mean-zero, random variables which are all uniformly bounded by a positive scalar M, i.e., $\|X_i\|_{\infty} \leq M$. Then for any t > 0,

$$P\left(\left|\sum_{i=1}^{N} X_{i}\right| \geq t\right) \leq 2\exp\left(-C\min\left(\frac{t^{2}}{\sum_{i} \boldsymbol{E}[X_{i}^{2}]}, \frac{t}{M}\right)\right).$$

Remark 0.2 This version is quite useful for bounded random variables which have standard deviation much lower than M. As seen in class for sums of sub-exponential random variables, there is a combination of sub-Gaussian behavior and sub-exponential behavior in the bound.

- 3. As can be seen from the above version of Bernstein inequality, being able to control a random variable in multiple ways can lead to better tail bounds. Now suppose you have a sequence of mean-zero independent random variables $X_1, X_2, \ldots X_N$ having the following properties:
 - (a) $||X_i||_2 = \sigma$,
 - (b) $||X_i||_{\infty} = M$,
 - (c) $||X_i||_{\Psi_1} = a_1,$
 - (d) $||X_i||_{\Psi_2} = a_2.$
 - (a) What can you say about the ordering of σ, M, a_1, a_2 ? (Which is largest? etc.)
 - (b) In the same spirit as Bernstein inequality above, can you give a tail bound using some subset of the above properties? To be interesting, this bound should be a significant improvement over bounds that can be made using a single property, at least for some values of t. Note: This is a very open-ended problem. I'm not sure if it is easy, hard, or impossible. We'll see what comes out!