1. Let $A \in \mathbb{R}^{m \times n}$ have rank 1. Show that there exist non-zero vectors $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$ so that $A = xy^T$. (Hint: Try a simple case and also compute xy^T for some simple choices for x and y.) (Comment: You could explore how to generalize such a result to higher rank.)

2. Determine bases for the following subspaces of \mathbb{R}^3.
 a) the line $x = 5t, y = -2t, z = t$.
 b) all vectors of the form $(a, b, c)^T$ such that $a - 3b = 2c$.

3. Let

 $$A = \begin{bmatrix}
 0 & 1 & 1 & 2 & -3 & 1 \\
 0 & 2 & 0 & 6 & -6 & 0 \\
 0 & 3 & 7 & 2 & -9 & 7 \\
 0 & 2 & 2 & 4 & -4 & 3
 \end{bmatrix}$$

 Determine a basis for the column space of A (chosen from columns of A) and determine a basis for the row space of A. Also give a basis for the nullspace of A, namely $\{x \in \mathbb{R}^6 : Ax = 0\}$.

4. Show that the set of all vectors $(b_1, b_2, b_3, b_4)^T$ such that the system below is consistent (i.e. can be solved)

 $$\begin{bmatrix}
 2 & 3 & 1 \\
 4 & 3 & 3 \\
 1 & 3 & 0 \\
 2 & 0 & 2
 \end{bmatrix} \begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 b_4
 \end{bmatrix}$$

 is a subspace of \mathbb{R}^4. Then find a basis of the subspace.

5. Let A be an $n \times n$ matrix with various eigenvalues including λ and μ with $\lambda \neq \mu$. Let L, M be the eigenspaces associated with eigenvalues λ, μ respectively. (That is, L is the set of all eigenvectors with eigenvalue λ; M is the set of all eigenvectors with eigenvalue μ.) Let $\{u_1, u_2, \ldots, u_p\}$ be a basis for L and let $\{v_1, v_2, \ldots, v_q\}$ be a basis for M. Show that $\{u_1, u_2, \ldots, u_p, v_1, v_2, \ldots, v_q\}$ is a linearly independent set of $p + q$ vectors. (Hint: try $p = 1$ and $q = 1$ to start). (Comment: You could explore the case if there were three different eigenvalues and three bases for the eigenspaces).

6. Let $\mathbb{R}^{n \times n}$ denote the vector space of all $n \times n$ matrices (over \mathbb{R}). Consider following transformation $f : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$

 $$f(A) = A^T.$$

 Show that this is a linear transformation.

 We say that a matrix A is symmetric if $A^T = A$ and we say that a matrix A is skew-symmetric if $A^T = -A$.

 a) Warmup question: Give a basis for $\mathbb{R}^{n \times n}$. How many elements are in your basis?

 b) What is the dimension of the eigenspace of eigenvalue 1 for f? Explain.

 c) What is the dimension of the eigenspace of eigenvalue -1 for f? Explain.

 d) Now use the previous question (and other facts) to show that any $A \in \mathbb{R}^{n \times n}$ is a linear combination of a symmetric matrix and a skew-symmetric matrix (you could show this directly of course but I’m asking you to use linear independence/dimension arguments).