Note: For problems 1,2,3, let \mathbb{R} be the field associated with each vector space.

1. For each of the following sets, circle T if it is a vector space (including the case when it is a subspace), and F if it is not. You do not need to show work for this problem. (The definition of addition and scalar multiplication for these sets follow the standard choices.)

(a) $\{(b_1, b_2, b_3) \text{ such that } b_1 = 1, b_2, b_3 \in \mathbb{R}\}$	such that $b_1 = 1, b_2, b_3 \in \mathbb{R}$ T
---	--

(b)
$$\{(b_1, b_2, b_3) \text{ such that } 2b_1 - 5b_2 + b_3 = 0, b_1, b_2, b_3 \in \mathbb{R}\}$$
 T

(c)
$$\{(b_1, b_2, b_3) \text{ such that } b_2 b_3 = 0, b_1 \in \mathbb{R}\}$$

(d)
$$\{(0,0,0)\}$$

(e) Infinite sequences
$$\{x_i, i \geq 1, \text{ such that } x_{i+1} \geq x_i\}$$
.

(f) The set of matrices A which satisfy
$$A^T = A$$
.

- (h) The set of 4 by 4 matrices with all eigenvalues greater than or equal to 0. T
- (i) The set of polynomials with degree at least 3.
- 2. Which of the following are subspaces of the vector space of all functions f with domain \mathbf{R} and range contained in \mathbf{R}
 - a) all f such that f(-1) = 0.
 - b) all f such that $f(x) \leq 0$ for all $x \in \mathbf{R}$.
 - c) all f of the form $f(x) = k_1 + k_2 \sin(x)$ where $k_1, k_2 \in \mathbf{R}$.
- 3. Consider the two dimensional vector space $V = \operatorname{span}(\cos^2(x), \sin^2(x))$, a subspace of all functions from $\mathbf{R} \to \mathbf{R}$. Which of the following belong to V (the argument to show $f \notin V$ will be more difficult).
 - (a) 0 (b) 2 (c) $3 + x^2$ (d) $\cos(2x)$
- 4. Show that 1 and $\sqrt{2}$ are linearly independent when we restrict ourselves to the scalar field \mathbf{Q} , the rational numbers. In other words show that there do not exist 4 integers a,b,c,d with $b \neq 0$, $d \neq 0$ and not both a = 0 and c = 0, which satisfy

$$\frac{a}{b} \times 1 + \frac{c}{d} \times \sqrt{2} = 0.$$

5. This is a putnam problem. Let A be a 2013×2014 matrix of integer entries such that each row sum is 0 (i.e. $A\mathbf{1} = \mathbf{0}$ where $\mathbf{1}$ is the 2014×1 vector of 1's and $\mathbf{0}$ is the 2013×1 vector of 0's. Show that $\det(AA^T) = 2014k^2$ for some integer k.

Hint: You might find it helpful to form a new square matrix B from A by adding a row of 1's. What is $det(BB^T)$?

6. Let V be a vector space over a field F. Then, given $\alpha \in F$ and $v \in V$ such that $\alpha v = 0$, prove that either $\alpha = 0$ or v = 0. (Hint: Check those axioms!)