MATH 223. Vectors and Geometry.

We have already seen that geometry shows up strongly in linear algebra in the rotation matrix $R(\theta)$. There are further remarkable interactions that are important in many applications. One typically sees some of these applications in multivariable calculus.

First we define the *dot product* of two *n*-tuples (which we generalize later to an *inner product* of vectors).

$$\mathbf{x} \cdot \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Theorem 0.1 Thinking of a vector $\mathbf{x} \in \mathbf{R}^n$, we have the length of \mathbf{x} as

$$||\mathbf{x}|| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$$

Proof: Apply induction on n. For n=2, we use the Pythagorean Theorem directly. In general we use $||(x_1, x_2, \ldots, x_{n-1}, 0)^T|| = \sqrt{x_1^2 + x_2^2 + \cdots + x_{m-1}^2}$ (using induction) and $||(0, 0, \ldots, 0, x_n)^T|| = \sqrt{x_n^2}$. Then these vectors are perpendicular (assuming the axes are perpendicular) and lie in a plane (generated by the span of the two vectors) and so we apply the Pythagorean Theorem to obtain the final result.

The dot product has more information.

Theorem 0.2 If we let θ to denote the angle between \mathbf{x} and \mathbf{y} (in the plane given as $span\{\mathbf{x},\mathbf{y}\}$), we have $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| \, ||\mathbf{y}|| \, \cos(\theta)$

Proof: We use the Cosine Law on the triangle formed by x,y and y-x. Then

$$||(\mathbf{y} - \mathbf{x})||^2 = ||\mathbf{x}||^2 + ||\mathbf{y}||^2 - 2||\mathbf{x}|| ||\mathbf{y}|| \cos(\theta)$$

. We have

$$||(\mathbf{y} - \mathbf{x})||^2 = (\mathbf{y} - \mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}) = \mathbf{y} \cdot \mathbf{y} - \mathbf{y} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{x}.$$

We have $\mathbf{x} \cdot \mathbf{x} = ||\mathbf{x}||^2$ and $\mathbf{y} \cdot \mathbf{y} = ||\mathbf{y}||^2$ and $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$. Matching terms, we obtain our desired result.

These lead one to consider what happens when $\mathbf{x} \cdot \mathbf{y} = 0$.

$$\mathbf{x}$$
 and \mathbf{y} are orthogonal if $\mathbf{x} \cdot \mathbf{y} = 0$

This is familiar in 2-dimensional space \mathbb{R}^2 and perhaps, depending on your Physics courses, in 3-dimensional space \mathbb{R}^3 .

It is somehwat arbitrary whether you say $\mathbf{0}$ is orthogonal to another vector. This is reminiscent of dealing with $\mathbf{0}$ when dealing with eigenvectors. As with eigenvectors, we will be looking for a basis for a vector space, in which the vectors are mutually orthogonal, and in that case $\mathbf{0}$ won't appear because it can never be part of a basis.

Interestingly we have orthogonality already appearing in the matrix product $AA^{-1} = I$ where column j of A^{-1} is orthogonal to the ith row of A for $i \neq j$.

Planes

Consider the equation in variables x, y, z

$$ax + by + cz = d$$

We have already identified the solutions as a plane, namely the solutions are

$$\{\mathbf{u} + s\mathbf{v} + t\mathbf{w} : s, t \in \mathbf{R}\}$$

We already know the null space of ax+by+cz=0 is 2-dimensional since the rank of the 1×3 matrix $[a\,b\,c]$ is 1. Let P=(e,f,g) be a point on the plane. Let $\mathbf{p}=(x,y,z)^T$ and $\mathbf{q}=(e,f,g)^T$. Let $\mathbf{n}=(a,b,c)^T$ be called the *normal*. Now ae+bf+cg=d becomes $\mathbf{n}\cdot\mathbf{q}=d$. Also ax+by+cy=d becomes $\mathbf{n}\cdot\mathbf{p}=d$. Then we can rewrite our equation as

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} - \begin{bmatrix} e \\ f \\ g \end{bmatrix} \right) = \mathbf{n} \cdot (\mathbf{p} - \mathbf{q}) = 0$$

Thinking of a *vector in the plane* as the difference or two points on the plane, we have that any vector in the plane is orthogonal to the normal vector \mathbf{n} .

Projection

It is possible to obtain a simple formula for the orthogonal *projection* of a vector \mathbf{x} onto a vector \mathbf{y} , namely a vector \mathbf{z} that is a multiple of \mathbf{y} and so that $\mathbf{x} - \mathbf{z}$ is orthogonal to \mathbf{y} . A picture helps with this.

$$\operatorname{proj}_{\mathbf{y}} \mathbf{x} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}$$

We check for orthogonality:

$$(\mathbf{x} - \mathrm{proj}_{\mathbf{y}} \mathbf{x}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} - (\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}) \cdot \mathbf{y} = 0$$

This yields a wealth of applications. You can compute a number of important geometric quantities such as the distance of a point from a plane (for which orthogonality is seen to be relevant).

Given the equation of a plane ax + by + cy = d we immediately have the normal $\mathbf{n} = (a, b, c)^T$. Given two vectors \mathbf{u}, \mathbf{v} ying in the plane (or 3 points in the plane) we can determine the normal as a non zero vector that is perpendicular to two given vectors \mathbf{u}, \mathbf{v} by solving a system of two equations $(\mathbf{u} \cdot \mathbf{n} = 0)$ and $\mathbf{v} \cdot \mathbf{n} = 0$ in 3 unknowns

$$\left[\begin{array}{ccc} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{array}\right] \left[\begin{array}{c} a \\ b \\ c \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right].$$

Some may wish to compute **n** using the *cross product*.