
MATH 223. Vectors and Geometry.

We have already seen that geometry shows up strongly in linear algebra in the rotation matrix
R(θ). There are further remarkable interactions that are important in many applications. One
typically sees some of these applications in multivariable calculus.

First we define the dot product of two n-tuples (which we generalize later to an inner product
of vectors).

x · y =


x1
x2
...
xn

 ·

y1
y2
...
yn

 = x1y1 + x2y2 + · · ·+ xnyn.

Theorem 0.1 Thinking of a vector x ∈ Rn, we have the length of x as

||x|| =
√
x21 + x22 + · · ·+ x2n =

√
x · x

Proof: Apply induction on n. For n = 2, we use the Pythagorean Theorem directly. In general we

use ||(x1, x2, . . . , xn−1, 0)T || =
√
x21 + x22 + · · ·+ x2m−1 (using induction) and ||(0, 0, . . . , 0, xn)T || =√

x2n.Then these vectors are perpendicular (assuming the axes are perpendicular) and lie in a plane

(generated by the span of the two vectors) and so we apply the Pythagorean Theorem to obtain
the final result.

The dot product has more information.

Theorem 0.2 If we let θ to denote the angle between x and y (in the plane given as span{x,y}),
we have x · y = ||x|| ||y|| cos(θ)

Proof: We use the Cosine Law on the triangle formed by x,y and y − x. Then

||(y − x)||2 = ||x||2 + ||y||2 − 2||x|| ||y|| cos(θ)

. We have
||(y − x)||2 = (y − x) · (y − x) = y · y − y · x− x · y + x · x.

We have x · x = ||x||2 and y · y = ||y||2 and x · y = y · x. Matching terms, we obtain our desired
result.

These lead one to consider what happens when x · y = 0.

x and y are orthogonal if x · y = 0

This is familiar in 2-dimensional space R2 and perhaps, depending on your Physics courses, in
3-dimensional space R3.

It is somehwat arbitrary whether you say 0 is orthogonal to another vector. This is reminiscent
of dealing with 0 when dealing with eigenvectors. As with eigenvectors, we will be looking for a
basis for a vector space, in which the vectors are mutually orthogonal, and in that case 0 won’t
appear because it can never be part of a basis.

Interestingly we have orthogonality already appearing in the matrix product AA−1 = I where
column j of A−1 is orthogonal to the ith row of A for i 6= j.



Planes
Consider the equation in variables x, y, z

ax+ by + cz = d

We have already identified the solutions as a plane, namely the solutions are

{u + sv + tw : s, t ∈ R}

We already know the null space of ax+by+cz = 0 is 2-dimensional since the rank of the 1×3 matrix
[a b c] is 1. Let P = (e, f, g) be a point on the plane. Let p = (x, y, z)T and q = (e, f, g)T . Let
n = (a, b, c)T be called the normal. Now ae+ bf + cg = d becomes n ·q = d. Also ax+ by+ cy = d
becomes n · p = d. Then we can rewrite our equation as a

b
c

 ·

 x
y
z

−
 e
f
g


 = n · (p− q) = 0

Thinking of a vector in the plane as the difference or two points on the plane, we have that any
vector in the plane is orthogonal to the normal vector n.

Projection
It is possible to obtain a simple formula for the orthogonal projection of a vector x onto a vector

y, namely a vector z that is a multiple of y and so that x− z is orthogonal to y. A picture helps
with this.

projyx =
x · y
y · y

y

We check for orthogonality:

(x− projyx) · y = x · y − (
x · y
y · y

y) · y = 0

This yields a wealth of applications. You can compute a number of important geometric quan-
tities such as the distance of a point from a plane (for which orthogonality is seen to be relevant).

Given the equation of a plane ax+ by + cy = d we immediately have the normal n = (a, b, c)T .
Given two vectors u,v ying in the plane (or 3 points in the plane) we can determine the normal
as a non zero vector that is perpendicular to two given vectors u,v by solving a system of two
equations (u · n = 0 and v · n = 0) in 3 unknowns

[
u1 u2 u3
v1 v2 v3

]  a
b
c

 =

[
0
0

]
.

Some may wish to compute n using the cross product.


