
Math 223 Symmetric and Hermitian Matrices. Richard Anstee
An n× n matrix Q is orthogonal if QT = Q−1. The columns of Q would form an orthonormal

basis for Rn. The rows would also form an orthonormal basis for Rn.
A matrix A is symmetric if AT = A.

Theorem 0.1 Let A be a symmetric n × n matrix of real entries. Then there is an orthogonal
matrix Q and a diagonal matrix D so that

AQ = QD, i.e. QTAQ = D.

Note that the entries of M and D are real.

There are various consequences to this result:
A symmetric matrix A is diagonalizable
A symmetric matrix A has an othonormal basis of eigenvectors.
A symmetric matrix A has real eigenvalues.

Proof: The proof begins with an appeal to the fundamental theorem of algebra applied to
det(A − λI) which asserts that the polynomial factors into linear factors and one of which yields
an eigenvalue λ which may not be real.

Our second step it to show λ is real. Let x be an eigenvector for λ so that Ax = λx. Again, if
λ is not real we must allow for the possibility that x is not a real vector.

Let xH = xT denote the conjugate transpose. It applies to matrices as AH = A
T

. Now
xHx ≥ 0 with xHx = 0 if and only if x = 0. We compute xHAx = xH(λx) = λxHx. Now

taking complex conjugates and transpose (xHAx)
H

= xHAHx using that (xH)H = x. Then
(xHAx)H = xHAx = λxHx using AH = A. Important to use our hypothesis that A is symmetric.
But also (xHAx)H = λxHx = λxHx (using xHx ∈ R). Knowing that xHx > 0 (since x 6= 0) we
deduce that λ = λ and so we deduce that λ ∈ R.

The rest of the proof uses induction on n. The result is easy for n = 1 (Q = [1]!). Assume
we have a real eigenvalue λ1 and a real eigenvector x1 with Ax1 = λ1x1 and ||x1|| = 1. We can
extend x1 to an orthonormal basis {x1,x2, . . . ,xn}. Let M = [x1 x2 · · ·xn] be the matrix formed
with columns x1,x2, . . . ,xn. Then

AM = M

[
λ1 B
0 C

]
or M−1AM =

[
λ1 B
0 C

]
.

which is the sort of result from our assignments. But the matrix on the right is symmetric since it is
equal to M−1AM = MTAM (since the basis was orthonormal) and we note (MTAM)T = MTAM
(using AT = A since A is symmetric). Then B is a 1× (n− 1) zero matrix and C is a symmetric
(n− 1)× (n− 1) matrix.

By induction there exists an orthogonal matrix N (with NT = N−1) and a diagonal matrix E
with N−1CN = E. We form a new orthognal matrix

P =

[
1 0 0 · · · 0
0 N

]

which has

P−1
[
λ1 B
0 C

]
P =

[
λ1 0 0 · · · 0
0 E

]



This becomes

P−1M−1AMP =

[
λ1 0 0 · · · 0
0 E

]
which is a diagonal matrix D. We note that (MP )T = P TMT = P−1M−1 and so Q = MP is an
orthogonal matrix with QTAQ = D. This proves the result by induction.

Recall that for a complex number z = a + bi, the conjugate z = a − bi. We may extend the
conjugate to vectors and matrices. When we consider extending inner products to Cn we must
define

< x,y >= xTy

so that < x,x >∈ R and < x,x >≥ 0. Also < y,x >= < x,y >. We would like some notation for
the conjugate transpose. Some use the notation AH = (Ā)T and vH = (v̄)T . Sometimes a dagger
is used. We write the complex inner product < v,u >= vHu.

A matrix A is hermitian if A
T

= A. For example any symmetric matrix of real entries is also
hermitian. The follow matrix is hermitian:[

3 1− 2i
1 + 2i 4

]

One has interesting identities such as < x, Ay >=< Ax,y > when A is hermitian.
Theorem Let A be a hermitian matrix. Then there is a unitary matrix M with entries in C

and a diagonal matrix D of real entries so that

AM = MD, A = MDM−1

As an example let

A =

[
1 i
−i 1

]
We compute

det(A− λI) =

[
1− λ i
−i 1− λ

]
= λ2 − 2λ

and thus the eigenvalues are 0, 2 (Note that they are real which is a consequence of the theorem).
We find that the eigenvectors are

λ1 = 2 v1 =

[
i
1

]
, λ2 = 0 v2 =

[
−i
1

]

Not surprisingly < v1,v2 >= 0, another consequence of the theorem. We would have to make them
of unit length to obtain an orthonormal basis:

U =

[ 1√
2
i − 1√

2
i

1√
2

1√
2

]
, D =

[
2 0
0 0

]
AU = UD

Let A be an n × n matrix. The proof of either of our theorems first requires us to find a real
eigenvalue. Assume A is hermitian so that AH = A. Now det(A − λI) is a polynomial in λ of
degree n. By the Fundamental theorem of Algebra it factors into linear factors. Let µ be a root
which might not be real but will be complex. Let v be an eigenvector of eigenvalue µ (computed
using our standard Gaussian Elimination over C). Then Av = µv. We compute vHAH = µvH .
By symmetry of A, vTAT = vTA. Thus vTAv = µvHv but also



An n×n matrix U is unitary if U
T

= U−1. The columns of U would form an orthonormal basis
for Cn. The rows would also form an orthonormal basis for Cn. The following matrix is unitary:[

1 1
i −i

]

since

[
1
i

]
=

[
1
−i

]
and

[
1
−i

]T [
1
−i

]
= 0.

Using this inner product one can perform Gram Schmidt on complex vectors (but be careful
with the order since in general < u,v >6=< v,u.):

v1 =

[
2

1 + i

]
, v2 =

[
i

1 + i

]
, < v1,v2 >= [2 1− i]

[
i

1 + i

]
= 2i+ 2.

u1 = v1, u2 = v2 −
< u1,v2 >

< u1,u1 >
u1 =

[
i

1 + i

]
− 2 + 2i

6

[
2

1 + i

]
=

[
−2

3
+ 1

3
i

1 + 1
3
i

]
You may check

< u1,u2 >= [2 1 + i]

[
−2

3
+ 1

3
i

1 + 1
3
i

]
= −4

3
+

2

3
i+

4

3
− 2

3
i = 0

To form a unitary matrix we must normalize the vectors.[
2

1 + i

]
→

[ 2√
6

1√
6

+ 1√
6
i

]
,

[
−2

3
+ 1

3
i

1 + 1
3
i

]
→

[
−2 + i
3 + i

]
→

[
− 2√

15
+ 1√

15
i

3√
15

+ 1√
15
i

]

U =

[ 2√
6

− 2√
15

+ 1√
15
i

1√
6

+ 1√
6
i 3√

15
+ 1√

15
i

]

where we can check U
T
U = I. Best to let a computer do these calculations!


