MATH 223. Orthogonal Vector Spaces.

Let U, V be vector spaces with $U \subseteq V$. We consider

 $U^{\perp} = \{ \mathbf{v} \in \mathbf{R}^n : \text{ for all } \mathbf{u} \in U, < \mathbf{u}, \mathbf{v} >= 0 \}$

Theorem 0.1 U^{\perp} is a vector space.

Proof: We show that U^{\perp} is a vector space. Here we must verify that $\mathbf{0} \in U^{\perp}$ since this will not follow from the other two closure rules. We have $\mathbf{0} \in U^{\perp}$ because $\langle \mathbf{u}, \mathbf{0} \rangle = 0$ always for any choice \mathbf{u} . Also if $\mathbf{x}, \mathbf{y} \in U^{\perp}$, then $\langle \mathbf{x} + \mathbf{y}, \mathbf{u} \rangle = \langle \mathbf{x}, \mathbf{u} \rangle + \langle \mathbf{y}, \mathbf{u} \rangle$ and $\langle c\mathbf{x}, \mathbf{u} \rangle = c \langle \mathbf{x}, \mathbf{u} \rangle$ by our inner product axioms. Thus if for all $\mathbf{u} \in U$, $\langle \mathbf{x}, \mathbf{u} \rangle = 0$ and $\langle \mathbf{y}, \mathbf{u} \rangle = 0$, then we conclude that $\langle \mathbf{x} + \mathbf{y}, \mathbf{u} \rangle = \langle \mathbf{x}, \mathbf{u} \rangle + \langle \mathbf{y}, \mathbf{u} \rangle = 0 + 0 = 0$ and also $\langle c\mathbf{x}, \mathbf{u} \rangle = c \langle \mathbf{x}, \mathbf{u} \rangle = c \cdot 0 = 0$. Thus we have $\mathbf{x} + \mathbf{y}$ and $c\mathbf{x}$ in U^{\perp} , verifying closure. So U^{\perp} is a vector space.

Consider a vector space $U \subseteq \mathbf{R}^n$. Thus we are thinking of $V = \mathbf{R}^n$ with the standard basis $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$. Let $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$ be a basis for U. Then if we write each \mathbf{u}_i with respect to the standard basis we can form a matrix $A = (a_{ij})$ with the *i*th row A being \mathbf{u}_i^T . Thus row space(A) = U and dim $(U) = \operatorname{rank}(A)$. Then

null space(A) = {
$$\mathbf{x} : A\mathbf{x} = \mathbf{0}$$
} = { $\mathbf{x} : \langle \mathbf{x}, \mathbf{u}_i \rangle = 0$ for $i = 1, 2, ..., k$ }
= { $\mathbf{x} : \langle \mathbf{x}, \mathbf{u} \rangle = 0$ for all $\mathbf{u} \in U$ } = U^{\perp}

Here we are assuming $\langle \mathbf{x}, \mathbf{u}_i \rangle$ is the standard dot product. Thus $\dim(U) + \dim(U^T) = n$ using our result that $\dim(nullsp(A)) + \operatorname{rank}(A) = n$ where n is the number of columns in A.

These ideas will happily generalize to two vector spaces U, V with $U \subseteq V$ with a general inner product. We do not need $V = \mathbb{R}^n$ but we can benefit from an orthonormal basis for V in order to use the null space idea. If we apply Gram Schmidt or otherwise, we can obtain a basis $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$ with the orthonormal properties:

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases}$$
 (*)

Now proceed much as before, expressing

$$\mathbf{u}_i = \sum_{j=1}^n a_{ij} \mathbf{v}_j$$

since $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for V and $\mathbf{u}_i \in V$. Let A be the associated $k \times n$ matrix. Now consider any vector $\mathbf{w} \in V$ which we can write as $\mathbf{w} = \sum_{j=1}^n w_j \mathbf{v}_j$. Let \mathbf{w} denote the vector in the coordinates of the orthonormal basis so $\mathbf{w} = (w_1, w_2, \dots, w_n)^T$ Then

$$<\mathbf{u}_{i}, \mathbf{w}> = <\sum_{j=1}^{n} a_{ij} \mathbf{v}_{j}, \sum_{\ell=1}^{n} w_{\ell} \mathbf{v}_{\ell} >$$
$$=\sum_{j=1}^{n} a_{ij} \left(<\mathbf{v}_{j}, \sum_{\ell=1}^{n} w_{\ell} \mathbf{v}_{\ell} >\right)$$
$$=\sum_{j=1}^{n} a_{ij} \left(\sum_{\ell=1}^{n} w_{\ell} \left(<\mathbf{v}_{j}, \mathbf{v}_{\ell} >\right)\right)$$

$$=\sum_{j=1}^{n}a_{ij}w_j$$

using properties of (*). Now $\sum_{j=1}^{n} a_{ij} w_j$ is the *i*th entry of $A\mathbf{w}$. Thus we have a way of expressing U^{\perp} as the null space(A) and we have the desired result.

Theorem 0.2 Let U, V be vector spaces over \mathbf{R} with U a subspace of V and V is finite dimensional. Then $\dim(U) + \dim(U^{\perp}) = \dim(V)$.

Another approach that doesn't use an orthonormal basis of V (with respect to the given inner product) but just any basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$, we use the observation that for a given \mathbf{u}_i , the function $\langle \mathbf{u}_i, \mathbf{x} \rangle$ is a linear transformation $V \to \mathbf{R}$ and so has an associated $1 \times n$ matrix. Now we verify that the k linear transformations $\langle \mathbf{u}_i, \mathbf{x} \rangle$ are linearly independent (and so the $k \times n$ matrix formed by these rows has rank = k). Assume

$$\sum_{i=1}^{k} c_i < \mathbf{u}_i, \mathbf{x} \ge 0$$

where we use the notation $\equiv 0$ to mean the identically 0 function, namely the **0** vector in the space of functions. But now

$$\sum_{i=1}^{k} c_i < \mathbf{u}_i, \mathbf{x} > = < \sum_{i=1}^{k} c_i \mathbf{u}_i, \mathbf{x} > \text{ for all } \mathbf{x}$$

but when we evaluate the righthand side at $\mathbf{x} = \sum_{i=1}^{k} c_i \mathbf{u}_i$, we obtain $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ and so by the axioms of an inner product we have $\mathbf{x} = \mathbf{0}$ i.e. $\sum_{i=1}^{k} c_i \mathbf{u}_i = \mathbf{0}$ which forces $c_1 = c_2 = \cdots = c_k = 0$ since the vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ are linearly independent.

Theorem 0.3 Let U, V be vector spaces with U a subspace of V and V is finite dimensional. Then

$$U^{\perp \perp} = U.$$