
MATH 223. Orthogonal Vector Spaces.

Let U, V be vector spaces with U ⊆ V . We consider

U⊥ = {v ∈ Rn : for all u ∈ U, < u,v >= 0}

Theorem 0.1 U⊥ is a vector space.

Proof: We show that U⊥ is a vector space. Here we must verify that 0 ∈ U⊥ since this will not
follow from the other two closure rules. We have 0 ∈ U⊥ because < u,0 >= 0 always for any choice
u. Also if x,y ∈ U⊥, then < x + y,u >=< x,u > + < y,u > and < cx,u >= c < x,u > by our
inner product axioms. Thus if for all u ∈ U , < x,u >= 0 and < y,u >= 0, then we conclude that
< x + y,u >=< x,u > + < y,u >= 0 + 0 = 0 and also < cx,u >= c < x,u >= c · 0 = 0. Thus
we have x + y and cx in U⊥, verifying closure. So U⊥ is a vector space.

Consider a vector space U ⊆ Rn. Thus we are thinking of V = Rn with the standard basis
e1, e2, . . . , en. Let {u1,u2, . . . ,uk} be a basis for U . Then if we write each ui with respect to the
standard basis we can form a matrix A = (aij) with the ith row A being uT

i . Thus row space(A) = U
and dim(U) = rank(A). Then

null space(A) = {x : Ax = 0} = {x :< x,ui >= 0 for i = 1, 2, . . . , k}

= {x :< x,u >= 0 for all u ∈ U} = U⊥

Here we are assuming < x,ui > is the standard dot product. Thus dim(U) + dim(UT ) = n using
our result that dim(nullsp(A)) + rank(A) = n where n is the number of columns in A.

These ideas will happily generalize to two vector spaces U, V with U ⊆ V with a general inner
product. We do not need V = Rn but we can benefit from an orthonormal basis for V in order to use
the null space idea. If we apply Gram Schmidt or otherwise, we can obtain a basis {v1,v2, . . . ,vn}
with the orthonormal properties:

< vi,vj >=

{
0 if i 6= j
1 if i = j

(∗)

Now proceed much as before, expressing

ui =
n∑

j=1

aijvj

since {v1,v2, . . . ,vn} is a basis for V and ui ∈ V . Let A be the associated k × n matrix. Now
consider any vector w ∈ V which we can write as w =

∑n
j=1 wjvj. Let w denote the vector in the

coordinates of the orthonormal basis so w = (w1, w2, . . . , wn)T Then

< ui,w >=<
n∑

j=1

aijvj,
n∑

`=1

w`v` >

=
n∑

j=1

aij

(
< vj,

n∑
`=1

w`v` >

)

=
n∑

j=1

aij

(
n∑

`=1

w` (< vj,v` >)

)



=
n∑

j=1

aijwj

using properties of (*). Now
∑n

j=1 aijwj is the ith entry of Aw. Thus we have a way of expressing
U⊥ as the null space(A) and we have the desired result.

Theorem 0.2 Let U, V be vector spaces over R with U a subspace of V and V is finite dimensional.
Then dim(U) + dim(U⊥) = dim(V ).

Another approach that doesn’t use an orthonormal basis of V (with respect to the given inner
product) but just any basis v1,v2, . . . ,vn, we use the observation that for a given ui, the function
< ui,x > is a linear transformation V → R and so has an associated 1× n matrix. Now we verify
that the k linear transformations < ui,x > are linearly independent (and so the k × n matrix
formed by these rows has rank = k). Assume

k∑
i=1

ci < ui,x >≡ 0

where we use the notation ≡ 0 to mean the identically 0 function, namely the 0 vector in the space
of functions. But now

k∑
i=1

ci < ui,x >=<
k∑

i=1

ciui,x > for all x

but when we evaluate the righthand side at x =
∑k

i=1 ciui, we obtain < x,x >= 0 and so by the
axioms of an inner product we have x = 0 i.e.

∑k
i=1 ciui = 0 which forces c1 = c2 = · · · = ck = 0

since the vectors u1,u2, . . . ,uk are linearly independent.

Theorem 0.3 Let U, V be vector spaces with U a subspace of V and V is finite dimensional. Then

U⊥⊥
= U.


