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If we write

A =
[
a b
c d

]
= [A(1)A(2)],

then

Ax =
[
a b
c d

] [
x
y

]
= xA(1) + yA(2).

We can consider functions
f(x) = Ax, f : x −→ Ax.

We note that Ax is a linear combination of the columns of A.
Later in the course the notation may be seen to be more sensible, but we write R to denote the

Real numbers and R2 to denote 2-tuples of Real numbers, two coordinate vectors such as vectors
in the plane.

A transformation T : R2 −→ R2 is linear if it satisfies

T (u + v) = T (u) + T (v)

T (αv) = αT (v)

This is sometimes written as a single rule that T (αu + βv) = αT (u) + βT (v).
One can verify that the function T (x) = Ax is a linear transformation by verifying the linearity

properties for matrix multiplication:

A(u + v) = Au + Av; A(αv) = αAv.

The first is seen as a consequence of the distributive laws, the second yields a matrix rule that
A(αB) = αAB.

Assume we have a linear transformation T , we can determine a matrix A as follows. Given a

transformation T that can be represented as T (x) = Ax for A =
[
a b
c d

]
, we see that

T (
[

1
0

]
) =

[
a
c

]
= A(1), T (

[
0
1

]
) =

[
b
d

]
= A(2).

Thus the two columns of A are determined as the images of
[

1
0

]
,

[
0
1

]
under the transformation.

We can determine A completely by T (
[

1
0

]
), T (

[
0
1

]
).

Thus we have shown that linear transformations T : R2 −→ R2 correspond to 2 × 2 matrices
with each linear transformation T having an associated matrix A to represent it; namely there is a
2× 2 matrix A with T (x) = Ax. Also, the reverse is true; namely if A is a 2× 2 matrix, then we
can obtain a linear transformation T : R2 −→ R2 by setting T (x) = Ax.

Some geometric transformations can be represented by matrices (obviously they need to be
linear transformations).

Dilations
These are the transformations stretching by various factors in different directions. Let

D(d1, d2) =
[
d1 0
0 d2

]
.



then the transformation T (x) = D(d1, d2)x stretches by a factor d1 in the x direction and a factor
d2 in the y direction.

Rotations
These are the most beautiful 2× 2 examples. Let R(θ) be the matrix corresponding to rotation

by θ in the counterclockwise direction. We note that

R(θ)(
[

1
0

]
) =

[
cos θ
sin θ

]
, R(θ)(

[
0
1

]
) =

[− sin θ
cos θ

]
This yields the matrix which represents the transformation (assuming rotation is linear; which you
can show)

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
.

Shears
These transformations seem a little more unusual and are less commonly mentioned. Let

G12(γ) =
[

1 γ
0 1

]
.

This is seen to be the shear by a factor γ in the x direction.

The following wonderful thing happens as a consequence of our associating functions with
matrices. Function composition becomes matrix multiplication.

Let T1(x) = A1x and T2(x) = A2x where

A1 =
[
a b
c d

]
, A2 =

[
e f
g h

]
.

Then we consider the composition T1 ◦ T2. We have

T1(
[

1
0

]
) =

[
a
c

]
, T1(

[
0
1

]
) =

[
b
d

]
, T2(

[
1
0

]
) =

[
e
g

]
, T2(

[
0
1

]
) =

[
f
h

]
.

Now

T1 ◦ T2(
[

1
0

]
) = T1(

[
e
g

]
) = eT1(

[
1
0

]
) + gT1(

[
0
1

]
) =

[
ae
ce

]
+

[
bg
dg

]
=

[
ae+ bg
ce+ dg

]
and similarily

T1 ◦ T2(
[

0
1

]
) = T1(

[
f
h

]
) = fT1(

[
1
0

]
) + hT1(

[
0
1

]
) =

[
af
cf

]
+

[
bh
dh

]
=

[
af + bh
cf + dh

]
.

Putting this together, we obtain that the matrix for T1 ◦ T2 is[
ae+ bg af + bh
ce+ dg cf + dh

]
which is the matrix product A1A2. Thus function composition corresponds to matrix multiplication.
You can imagine that the rules for matrix multiplication came from a desire to have this hold.

Function composition is well known to be associative namely

T1 ◦ (T2 ◦ T3) = (T1 ◦ T2) ◦ T3.



This follows from computing that (T1 ◦ (T2 ◦ T3))(x) = T1(T2(T3(x))) = ((T1 ◦ T2) ◦ T3)(x) and so

A1(A2A3) = (A1A2)A3.

A beautiful consequence of this is the associativity of matrix multiplication follows from the asso-
ciativity of function composition.

Please note the order of the operations. The transformation T1 ◦ T2 ◦ T3 acts as first T3, then
T2, then T1. Since the order of matrix multiplication is important, you must check this carefully in
problems.

In this vein, we see that a matrix inverse is related to the compositional inverse of linear
functions. The uniqueness is easily understood in the function context as well as the fact that the
inverse matrix commutes with the original matrix; namely AA−1 = A−1A.


