
MATH 223: Gaussian Elimination.

Consider the following system of equations solved by elementary row operations.







x1 −2x2 +x3 = 0
2x2 −8x3 = 8

−4x1 +5x3 +9x3 = −9







(1)

⇒







x1 −2x2 +x3 = 0
2x2 −8x3 = 8
−3x2 +13x3 = −9







(2)

⇒







x1 −2x2 +x3 = 0
2x2 −8x3 = 8

x3 = 3







(3)

Because this is a triangular system, the system can (always) be solved by back substitution:

x3 = 3, x2 = 16, x1 = 29

In matrix terms the system of equations is





1 −2 1
0 2 −8
−4 5 9









x1

x2

x3



 =





0
8
−9





The elementary row operation of adding 4 times row 1 to row 3 can be seen to be a linear
transformation and so can be represented by a matrix.

A





x
y
z



 =





x
y

z + 4x



 =





x
y

4x +z



 =





1 0 0
0 1 0
4 0 1









x
y
z





Note that this linear transformation has an inverse, namely subtracting 4 times row 1 from row
3 which has the matrix





1 0 0
0 1 0
−4 0 1





We apply our elementary row operations to the original matrix and the right hand side.





1 0 0
0 1 0
0 3/2 1









1 0 0
0 1 0
4 0 1









1 −2 1
0 2 −8
−4 5 9



 =





1 −2 1
0 2 −8
0 0 1









1 0 0
0 1 0
0 3/2 1









1 0 0
0 1 0
4 0 1









0
8
−9



 =





0
8
3





Theorem 1 Let A and b be given. Let B be an invertible matrix. Then

{x : Ax = b} = {x : BAx = Bb}



Proof: If x satisfies Ax = b then x satisfies BAx = Bb and hence

{x : Ax = b} ⊆ {x : BAx = Bb}

where ⊆ denotes subset. Now if x satisfies BAx = Bb then we may multiply on the left by B−1 to
obtain Ax = B−1BAx = B−1Bb = b. Thus

{x : BAx = Bb} ⊆ {x : Ax = b}.

This completes the proof.

Our elementary row operations can be seen to be invertible by considering them as linear
transformations.

Let D(i, λ) denote the operation of multiplying the ith row by the non zero constant λ. Then
the inverse is multiplying row i by 1/λ namely D(i, 1/λ).

D(2, 17) =





1 0 0
0 17 0
0 0 1



 , (D(2, 17))−1 =





1 0 0
0 17 0
0 0 1





−1

=





1 0 0
0 1/17 0
0 0 1





Let E(i, j) denote the matrix corresponding to interchanging row i and row j. Then its inverse
is seen to be E(i, j).

E(1, 2) =





0 1 0
1 0 0
0 0 1



 , (E(1, 2))−1 =





0 1 0
1 0 0
0 0 1





−1

= E(1, 2)

Let F (i, j, λ) denote the operation of adding λ times the ith row to row j. Then the inverse will
be adding −λ times the ith row to row j and hence F (i, j,−λ).

F (2, 3, 5) =





1 0 0
0 1 0
0 5 1



 , (D(2, 3, 5))−1 =





1 0 0
0 1 0
0 5 1





−1

=





1 0 0
0 1 0
0 −5 1



 = F (2, 3,−5)

Sample problem















2x1 −2x2 +2x4 +x5 = 0
4x1 −4x2 +4x4 +3x5 +2x6 = 2
2x1 −x2 +3x3 +4x4 +x5 +x6 = 3
2x1 +6x3 +6x4 +3x5 +6x6 = 10























2 −2 0 2 1 0 0
4 −4 0 4 3 2 2
2 −1 3 4 1 1 3
2 0 6 6 3 6 10

















2 −2 0 2 1 0 0
0 0 0 0 1 2 2
0 1 3 2 0 1 3
0 2 6 4 2 6 10



















2 −2 0 2 1 0 0
0 1 3 2 0 1 3
0 0 0 0 1 2 2
0 2 6 4 2 6 10

















2 −2 0 2 1 0 0
0 1 3 2 0 1 3
0 0 0 0 1 2 2
0 0 0 0 2 4 4

















2 −2 0 2 1 0 0
0 1 3 2 0 1 3
0 0 0 0 1 2 2
0 0 0 0 0 0 0









We are now at echelon form or staircase pattern. You may but I do not encourage you to go on to
reduced echelon form. Back in our original for as a set of equations we have:







2x1 −2x2 +2x4 +x5 = 0
x2 +x3 +2x4 +x6 = 3

x5 +2x6 = 2







where we have discarded the equation 0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 0.
We have the pivot variables to be {x1, x2, x5} where the remaining variables {x3, x4, x6} are

called free variables since if we choose any values at all for the three free variables , then because
of the triangular form of the remaining system we can solve (uniquely) for the pivot variables.







2x1 −2x2 +x5 = −2x4

x2 = 3 −3x3 −2x4 −x6

x5 = 2 −2x6







To avoid confusion (or perhaps create it) we introduce parameters s, t, u to be the values chosen
for the free variables {x3, x4, x6}.

x3 = s, x4 = t, x6 = u

(this is the usual problem of distinguishing the variable from the value it takes)







2x1 −2x2 +x5 = −2t
x2 = 3 −3s −2t −u

x5 = 2 −2u







Back substitute to solve:

x5 = 2 −2u
x2 = 3 −3s −2t −u
x1 = 2 −3s −3t



We may write this as
















x1

x2

x3

x4

x5

x6

















=

















2 −3s −3t
3 −3s −2t −u

s
t

2 −2u
u

































x1

x2

x3

x4

x5

x6

















=

















2
3
0
0
2
0

















+ r

















−3
−3
1
0
0
0

















+ s

















−3
−2
0
1
0
0

















+ t

















0
−1
0
0
−2
1

















thus the set of solutions is















































x1

x2

x3

x4

x5

x6

















=

















2
3
0
0
2
0

















+ r

















−3
−3
1
0
0
0

















+ s

















−3
−2
0
1
0
0

















+ t

















0
−1
0
0
−2
1

















: r, s, t ∈ R































This called vector parametric form (or parametric vector form) and gives a different way of
looking at the solutions to Ax = b. If we follow this procedure then we end up with the boxed
entries as shown, 0’s in the rows of the free variables in the first vector then an identity matrix in
the rows of the free variables in the remaining vectors.

When we have written the set of solutions

{x : Ax = b} = {w + rv1 + sv2 + tv3, r, s, t ∈ R}

we deduce that
Aw = b

(using r = s = t = 0) and then we may deduce that

Av1 = 0, Av2 = 0, Av3 = 0

by noting that for example with r = 1, s = t = 0, we have A(w+v1) = b and then A(w+v1)−Aw =
b − b = 0 but A(w + v1) − Aw = Aw + Av1 − Aw = Av1.

This observation will provide a way to check your vector parametric form but you can also use it
to solve for the vectors by substituting the entries as given by our boxes and solving for the rest of
the vector. We solve for w by setting the free variables to 0 and the solving the triangular system.
We solve for v1 by setting x3 = 1, x4 = 0, x6 = 0 and then solving the triangular system WHERE
YOU HAVE SET THE RIGHT HAND SIDE TO THE ZERO VECTOR. You do the same for v2

and v3, again BY SETTING THE RIGHT HAND SIDE TO THE ZERO VECTOR. You might
wish to try this alternate strategy for reading of the vector parametric form from the echelon form.



If we had changed the last equation to 2x1 + 6x3 + 6x4 + 3x5 + 6x6 = 11, then we would obtain
the system









2 −2 0 2 1 0 0
0 1 3 2 0 1 3
0 0 0 0 1 2 2
0 0 0 0 0 0 1









The last equation is now 0x1 + 0x2 + 0x3 + 0x4 + 0x5 + 0x6 = 1 for which there is no solution. In
this case we say the system of equations is inconsistent.

Theorem 2 Let A be an n × n matrix. The following are equivalent.
i) A−1 exists (we say A is invertible or nonsingular.
ii) Ax = 0 has only one solution, namely x = 0.
iii) A can be transformed to a triangular matrix, with nonzeros on the main diagonal, by elementary
row operations.
iv) A can be transformed to I by elementary row operations.

Proof: We can verify by Gaussian elimination that iii)⇒ iv)⇒ i)⇒ ii)⇒ iii), the last implication
following because there can be no free variables (the system Ax = 0 is always consistent) and so
elementary row operations must result in every variable being a pivot variable.

Finding A−1

Let A =





1 0 2
0 1 1
1 1 1





To solve for A−1 we can solve

Ax1 =





1
0
0



 , Ax2 =





0
1
0



 , Ax3 =





0
0
1





and it makes sense to solve for all three vectors x1,x2,x3 at the same time:

A I




1 0 2 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1





E1 =





1 0 0
0 1 0
−1 0 1





E1A E1




1 0 2 1 0 0
0 1 1 0 1 0
0 1 −1 −1 0 1





E2 =





1 0 0
0 1 0
0 −1 1





E2E1A E2E1




1 0 2 1 0 0
0 1 1 0 1 0
0 0 −2 −1 −1 1





E3 =





1 0 0
0 1 0
0 0 −1/2





E3E2E1A E3E2E1




1 0 2 1 0 0
0 1 1 0 1 0
0 0 1 1/2 1/2 −1/2







E4 =





1 0 0
0 1 −1
0 0 1



 , E5 =





1 0 −2
0 1 0
0 0 1





E5E4E3E2E1A E5E4E3E2E1




1 0 0 0 −1 1
0 1 0 −1/2 1/2 1/2
0 0 1 1/2 1/2 −1/2





Thus we have (E5E4E3E2E1)A = I and so A−1 = E5E4E3E2E1 and A = E−1

1
E−1

2
E−1

3
E−1

4
E−1

5
.

By the way, always check your work:

A−1A =





0 −1 1
−1/2 1/2 1/2
1/2 1/2 −1/2









1 0 2
0 1 1
1 1 1



 =





1 0 0
0 1 0
0 0 1



 = I


