Fibonacci Numbers and 2 x 2 matrices R. Anstee

The fibonacci numbers f1, fa, fs, . . . satify
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yielding the sequence 1,1,2,3,5,8,13,21,....
If we let f,, denote the nth fibonacci number we get a matrix equation:

ISR

2
Thus, if we let A = [ 1 (1] ], we can compute f, as the top entry of [ 1 (1)] [ 1 ] =
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]. To compute a high power of A, we compute the eigenvalues and eigenvectors. Now

det([ IIk oik: ]>=k2—k—1, which has roots k = £ and k = 1572,
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Thus if we let
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we have A = PDP~! and so A = PDP~'PDP~'...PDP~ 1 = pPDtpP~1,
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Now using our formula that l In ] = An—2 ! ] = An-! l (1) ], we obtain:
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Given that = \/_ —.6 and so limj_ (1_\/5) = 0. Thus
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fn is the closest integer to (%) (
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