
MATH 223: Diagonalization with Eigenvalues and Eigenvectors.
An application to bird populations (Leslie Matrix).

Sample computation

Let

A =

[
.7 .3
2 0

]
An application associated with this matrix is a simple model of a growing bird population. Let

xn = no. of adults in year n,

yn = no. of juveniles in year n.

We have a matrix equation to represent changes from year to year. We have 30% of the juveniles
survive to become adults, 70% of the adults survive a year, and each adult has 2 offspring (juveniles).
We have this information summarized in a matrix equation:[

xn+1

yn+1

]
=

[
.7 .3
2 0

] [
xn
yn

]
.

We deduce, by induction, that [
xn
yn

]
= An

[
x0
y0

]
.

This is a sample of many applications where we wish to know what happens to An as n −→∞.
Recall our computation of eigenvalues/eigenvectors for this matrix:
First we define an eigenvector x of eigenvalue λ to be satisfy Ax = λx and x 6= 0. This is

equivalent to (A − λI)x = 0 and x 6= 0. This can only occur by our previous observations when
det(A− λI) = 0 and moreover when det(A− λI) = 0 we can find an x 6= 0 with Ax = λx.

det(A− λI) = det(

[
.7− λ .3

2 −λ

]
)

= (.7− λ)(−λ)− .3× 2

=
1

10
(10λ2 − 7λ− 6)

=
1

10
(5λ− 6)(2λ+ 1)

Thus we have two eigenvalues λ = 6
5
, −1

2
.

For λ = 6
5
, we solve (A− 6

5
I)v = 0 for v 6= 0:

(A− 6

5
I)v =

[
−.5 .3
2 −1.2

] [
x
y

]
=

[
0
0

]

The vector v =

[
3
5

]
works as an eigenvalue of A of eigenvalue 6

5
. We check

[
.7 .3
2 0

] [
3
5

]
=

[
3.6
6

]
=

6

5

[
3
5

]
.



For λ = −1
2

, we solve (A− −1
2
I)v = 0 for v 6= 0:

(A− −1

2
I)v =

[
1.2 .3
2 .5

] [
x
y

]
=

[
0
0

]

The vector v =

[
1
−4

]
works as an eigenvalue of A of eigenvalue −1

2
. We check

[
.7 .3
2 0

] [
1
−4

]
=

[
−.5
2

]
=
−1

2

[
1
−4

]
.

Note that we will always succeed in finding an eigenvector (a non zero vector) assuming our
eigenvalue λ has det(A− λI) = 0.

The following idea is important in a variety of contexts in this course. For a matrix A, assume
we have two eigenvectors v1,v2 of eigenvalues λ1, λ2. Form the matrix

M = [v1 v2].

We have the matrix equation
AM = MD

where

D =

[
λ1 0
0 λ2

]
.

Now make the assumption that M is invertible. This is a non trivial assumption. For us, it is true
as long as v1 6= kv2 for any k. We can verify this to be true if λ1 6= λ2. Assume v1 = kv2 and get
a contradiction:

Av1 = A(kv2) = kA(v2) = kλ2v2 = λ2v1,

Av1 = λ1v1.

We conclude that λ2v1 = λ1v1, i.e. (λ1 − λ2)v1 = 0 and so, with v1 6= 0, λ1 − λ2 = 0 and so
λ1 = λ2 which is a contradiction. Thus v1 6= kv2 for any k.

Now
AM = MD means M−1AM = D and A = MDM−1.

In our case

A =

[
.7 .3
2 0

]
, M =

[
3 1
5 −4

]
, M−1 =

[
4
17

1
17

5
17

−3
17

]
, D =

[
6
5

0
0 −1

2

]

Now we have A = MDM−1 and so

A2 = MDM−1MDM−1 = MD(M−1M)DM−1 = MD2M−1,

A3 = MDM−1MDM−1MDM−1 = MD(M−1M)D(M−1M)DM−1 = MD3M−1,

An = MDnM−1.

It is straightforward to compute

Dn =

[
(6
5
)n 0

0 (−1
2

)n

]
,



hence

An =

[
.7 .3
2 0

]n
=

[
3 1
5 −4

] [
(6
5
)n 0

0 (−1
2

)n

] [
4
17

1
17

5
17

−3
17

]

=

[
12
17

(1.2)n + 5
17

(−.5)n 3
17

(1.2)n − 3
17

(−.5)n
20
17

(1.2)n − 20
17

(−.5)n 5
17

(1.2)n + 12
17

(−.5)n

]
.

Thus

A

[
1
0

]
=

[
12
17

(1.2)n + 5
17

(−.5)n
20
17

(1.2)n − 20
17

(−.5)n

]
≈

[
12
17

(1.2)n
20
17

(1.2)n

]
,

where we are using the fact that limn→∞(−.5)n = 0. One aspect of the result is that the population
is growing 20% a year and also the ratio of adults to juveniles is approximately 3 : 5 in a stable
population. A ratio sufficiently far from 3 : 5 would alert the biologist to the likelihood of the
population having undergone some environmental disturbance in the recent past.


