MATH 223: Diagonalization with Eigenvalues and Eigenvectors.
An application to bird populations (Leslie Matrix).

Sample computation
Let
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An application associated with this matrix is a simple model of a growing bird population. Let

Tn, = no. of adults in year n,

Yn = no. of juveniles in year n.

We have a matrix equation to represent changes from year to year. We have 30% of the juveniles
survive to become adults, 70% of the adults survive a year, and each adult has 2 offspring (juveniles).
We have this information summarized in a matrix equation:
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This is a sample of many applications where we wish to know what happens to A™ as n — oc.
Recall our computation of eigenvalues/eigenvectors for this matrix:
First we define an eigenvector x of eigenvalue A to be satisfy Ax = Ax and x # 0. This is
equivalent to (A — AI)x = 0 and x # 0. This can only occur by our previous observations when
det(A — AI) = 0 and moreover when det(A — AI) = 0 we can find an x # 0 with Ax = Ax.

We deduce, by induction, that
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Thus we have two eigenvalues A =
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For A =%, we solve (A — ¢I)v

0 for v # 0:
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] works as an eigenvalue of A of eigenvalue g. We check
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The vector v = [ g



For A = 5}, we solve (A — StI)v =0 for v # 0:
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] works as an eigenvalue of A of eigenvalue _71 We check
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Note that we will always succeed in finding an eigenvector (a non zero vector) assuming our
eigenvalue A has det(A — \I) = 0.

The following idea is important in a variety of contexts in this course. For a matrix A, assume
we have two eigenvectors vy, vy of eigenvalues \i, . Form the matrix

The vector v = [ _14

M = [vyvy).

We have the matrix equation
AM = MD

a0
b= 1]

where

Now make the assumption that M is invertible. This is a non trivial assumption. For us, it is true

as long as vy # kv, for any k. We can verify this to be true if A\; # Ay. Assume v; = kvy and get
a contradiction:

AVl = A(ng) = kA(VQ) = ]{Z>\QV2 = )\2V1,
AVl = )\1V1.

We conclude that Aovy = Ajvy, ie. (A — A2)vy = 0 and so, with v; # 0, \; — Ay = 0 and so
A1 = A9 which is a contradiction. Thus v; # kv, for any k.
Now

AM = MD means M *AM =D and A= MDM™".
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A2 =MDM *MDM ™' =MDM *M)DM ™ = MD*M ™,

In our case
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Now we have A = M DM ™" and so
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A* = MDM *MDM *MDM ™' = MDM*M)D(M*M)DM ™ = MD*M™,
A" = MD"M™*,

It is straightforward to compute



hence
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where we are using the fact that lim,,_,.(—.5)" = 0. One aspect of the result is that the population
is growing 20% a year and also the ratio of adults to juveniles is approximately 3 : 5 in a stable
population. A ratio sufficiently far from 3 : 5 would alert the biologist to the likelihood of the
population having undergone some environmental disturbance in the recent past.



