
MATH 223: Notes on determinants. Richard Anstee

We seek a determinant function det : Rn×n → R that satisfies various natural properties.
• det I = 1
• If B is obtained by multiplying row i of A by t then det(B) = t · det(A)
• If B is obtained from A by interchanging row i and row j then det(B) = − det(A)
• If B is obtained from A by adding a multiple of row i to row j then det(B) = det(A)
• det(AB) = det(A) det(B)
• det(A) 6= 0 if and only if A has an inverse
• det(AT ) = det(A)
• det(A) measures some volume: | det(A)| is the volume of the parallelepiped formed by the

column vectors of A

The idea is to give a specific function and verify that it has the desired properties. For conve-
nience, use the notation Mij to denote the matrix obtained from A by deleting row i and column
j. We define

det(A) = (−1)1+1a11 detM11 + (−1)1+2a12 detM12 + · · ·+ (−1)1+na1n detM1n (1)

This is called expansion about the first row because one of our goals is to show that the following
formulas are equivalent

det(A) = (−1)i+1ai1 detMi1 + (−1)i+2ai2 detMi2 + · · ·+ (−1)i+nain detMin

and
det(A) = (−1)1+ja1j detM2j + (−1)2+ja2j detM2j + · · ·+ (−1)n+janj detMnj

We embark on showing some facts/lemmas that can be deduce from (1). The numbering of the
lemmas is not important. We organize our results to obtain the results involving the elementary
matrices which will be used to prove det(AB) = det(A) det(B).

Lemma 1 Let A be an n× n matrix. If A has a row of 0’s or a column of 0’s then det(A) = 0.

Proof: We prove this by induction on n with the base case for n = 2 being easy.

Lemma 2 Let A be an n× n triangular matrix with diagonal entries d1, d2, . . . , dn. Then

det(A) =
n∏

i=1

di

Proof: We apply expansion about the first row and discover that M1j has a column of 0’s unless
j = 1 and so we can apply the previous lemma. We apply induction on n for det(M11).

Corollary 3 det(I) = 1.

Lemma 4 Let E(i, j) denote the matrix which interchanges row i and j.Then det(E(i, j)A) =
− det(A)



Proof: We leave the proof for i = 1,j = 1 as a separate and rather technical argument. The rest
we can prove by induction. This is easy for E(i, j) where both i, j ≥ 2 but E(1, j) for j ≥ 3 is
handled differently. We have that E(1, 2)E(2, j)E(1, 2)A = E(1, j)A and that is how we apply
induction under the assumption that we have proven det(E(1, 2)A) − det(A) by an independent
argument.

Corollary 5 det(E(i, j)) = −1

Proof: Use A = I in det(E(i, j)A) = − det(A).

Lemma 6 Let D(i, t) denote the matrix which multiplies row i by t. Thus det(D(i, t)) = t by
Lemma 2 and also det(D(i, t)A) = t · det(A).

Proof: For I = 1, this is straightforward by (1). For i > 1, then use induction on n to deduce
that det(M1j) = t · det(M1j).

Corollary 7 det(D(i, t)) = t.

Proof: D(i, t)I = D(i, t) and det(I) = 1.

Lemma 8 Let A have two identical rows. Then det(A) = 0.

Proof: Let the two identical rows be i, j. Then E(i, j)A = A. Then by the above lemma,
det(A) = det(E(i, j)A) = − det(A) and so det(A) = 0.

Lemma 9 Let A,B,C and i be given. Assume A,B,C are identical with the possible exception of
row i for which row i of A plus row i of B is equal to row i of C. Then det(A) + det(B) = det(C).

Proof: This is immediate by (1) when i = 1. For i > 1, apply induction on n. Let M1j be the minor
from A, M ′

1j be the minor from B and M ′′
1j be the minor from C. Then the (i−1)st row of M1j plus

the (i− 1)st row of M ′
1j is equal to the (i− 1)st row of M ′′

ij. Thus det(M1j) + det(M ′
1j) = det(M ′′

1j).
Then we can obtain det(A) + det(B) = det(C).

Lemma 10 Let i, j, t be given and let F (i, j, t) denote the elementary matrix corresponding to
adding t times row i to row j. Then det(F (i, j, t)A) = det(A).

Proof: Apply the previous lemma noting that row j of F (i, j, t)A is row j of A plus t times row i
of A. Thus we have two matrices A, B with B coming from A by replacing row j by t times row
i. Now det(B) = 0, since row j of B is t times row i of B. If t = 0 we use Lemma 1. Or perhaps
more obviously we note that F (i, j, 0)A = A.

If t 6= 0, we apply Lemma 6 to remove the factor t and then use Lemma 8. Now det(F (i, j, t)A) =
det(A) + det(B) = det(A).

Corollary 11 det(F (i, j, t)) = 1.

Proof: Use A = I in Lemma 10.

Theorem 12 A is invertible if and only if det(A) 6= 0.



Proof: Apply our row reductions to reduce A to staircase pattern B by Gaussian Elimination.
From Corollary 5, Corollary 7, Corollary 11, det(A) 6= 0 if and only if det(B) 6= 0. Now det(B) 6= 0
will yield (by Lemma 2) that B must be an (upper) triangular matrix with non zero elements on
the diagonal. By our previous work, this implies A has an inverse. Also det(B) = 0 will yield that
there will be a 0 on the diagonal and so in the staircase pattern, there will be fewer corner/pivot
variables than n and so there will be at least one free variable. Then we can find a vector x 6= 0
with Ax = 0 which implies that A has no inverse.

Theorem 13 det(AB) = det(A) det(B)

Proof: We first split into two cases, depending on whether A is invertible or not.
Case 1: A is invertible.

If A is invertible then we can express A as a product of our elementary matrices; A =
E1E2E3 · · ·Et. We noted this after we used Gaussian Elimination to find A−1. Now proceed
using Lemma 4, Lemma 6, Lemma 10 as needed for elementary matrices.

AB = E1E2E3 · · ·EtB = (E1(E2(E3 · · · (EtB) · · · )))

Thus (by induction)
det(AB) = det(E1) det(E2) · · · det(Et) det(B)

and also (by the same induction)

det(A) = det(E1(E2(E3 · · · (Et−1Et) · · · ))) = det(E1) det(E2) · · · det(Et).

This yields det(AB) = det(A) det(B).
Case 2: A is not invertible.

Thus det(A) = 0. If we have det(AB) 6= 0, then there exists a matrix M = (AB)−1 so that
ABM = I from which we have BM = A−1, a contradiction. So det(AB) = 0 = det(A) det(B).

Theorem 14 Let i be given with 1 ≤ i ≤ n. Then we can compute det(A) by expansion about the
ith row:

det(A) = (−1)i+1ai1 detMi1 + (−1)i+2ai2 detMi2 + · · ·+ (−1)i+nain detMin

Proof: Simply apply the row interchanges (i, i− 1), (i− 2, i− 1), . . ., (1, 2) which brings row i up
to the first row and changes the determinant by (−1)i−1. Now apply (1) to the new matrix.

Theorem 15 det(AT ) = det(A)

Proof: We could simply rewrite what we have done using elementary column operations and using
multiplication on the left. A simpler approach, assuming A is invertible, is to write A as a product
of elementary matrices so that A = E1E2E3 · · ·Et. Then AT = (Et)

T (Et−1)
T · · · (E2)

T (E1)
T . We

then need only verify that det((Ej)
T ) = det(Ej). For the interchange matrix E(i, j) , we have

E(i, j)T = E(i, j) (we obtain E(i, j) by starting with the identity I and then interchanging rows i
and j which is the same as interchanging columns i and j of the identity). For the multiplication
matrix D(i, t) we deduce (D(i, t))T = D(i, t). For the matrix adding a multiple of one row to another
we have (F (i, j, t))T = F (j, i, t) and so det((F (i, j, t))T ) = det(F (j, i, t)) = 1 = det(F (i, j, t).



Theorem 16 Let j be given with 1 ≤ j ≤ n. Then we can compute det(A) by expansion about the
jth column:

det(A) = (−1)1+ja1j detM2j + (−1)2+ja2j detM2j + · · ·+ (−1)n+janj detMnj

Proof: Simply apply Lemma 15 and then use expansion about the jth row of AT .
This particular approach to determinants starts with a very concrete expression for the determi-

nant (expnasion about the first row) and then determines various properties that follow from that
expression. There are other approaches to determinants. One interesting approach that Apostol
used was to give 4 axioms that a function such as the determinant should satisfy and then verify
that there is a unique function that satisfies then and that it can be computed using (1).

Consider a function f of n vectors in Rn. We say that f is called a determinant function of
order n if it satisfies the following axioms.
Axiom 1 (Homogeneity in each row) f(x1,x2, . . . , t · xk, . . .) = t · f(x1,x2, . . . ,xk, . . .).

Axiom 2 (additivity in each row) f(x1,x2, . . . ,xk+y, . . .) = f(x1,x2, . . . ,xk, . . .)+f(x1,x2, . . . ,y, . . .)

Axiom 3 (vanishes if two rows are equal) f(x1,x2, . . . ,xk, . . .) = 0 if xk = x` for k 6= `.

Axiom 4 (determinant of I is 1) f(e1, e2, . . . , ek, . . .) = 1 where ei is the vector with a 1 in row i
and zeros elsewhere.

The Apostol calculus book carries through to show that these 4 axioms determine a unique
function that matches our determinant given in (1).


