
MATH 223: Coordinates and Change of Basis. Richard Anstee

If we have a set of vectors {u1,u2, . . . ,uk} where we set U = span{u1,u2, . . . ,uk}, it is natural
to express any vector u ∈ U as a linear combination of the vectors u1,u2, . . . ,uk, namely

u = c1u2 + c2u2 + · · ·+ ckuk

where we think of c1, c2, . . . , ck as the coordinates of u with respect to the spanning set {u1,u2, . . . ,uk}.
Now if {u1,u2, . . . ,uk} is linearly independent, then the coordinates behave as we would hope,
namely they are unique.

Theorem 1 If the set {u1,u2, . . . ,uk} is linearly independent, then for each vector u ∈ U =
span{u1,u2, . . . ,uk}, there are unique numbers c1, c2, . . . , ck (the coordinates) such that u = c1u2 +
c2u2 + · · ·+ ckuk.

Proof: The existence of numbers c1, c2, . . . , ck follows from the fact that u ∈ U = span{u1,u2, . . . ,uk}.
Assume

u = c1u2 + c2u2 + · · ·+ ckuk

u = d1u2 + d2u2 + · · ·+ dkuk

Then by subtracting the two equations we obtain

0 = (c1 − d1)u2 + (c2 − d2)u2 + · · ·+ (ck − dk)uk.

Since the set {u1,u2, . . . ,uk} is linearly independent, then we deduce that c1− d1 = 0, c2− d2 = 0,
. . ., ck − dk = 0 and hence c1 = d1, c2 = d2, . . . ,ck = dk.

Thus if we have a k-dimensional vector space than we can coordinatize the vectors as elements
of Rk. Consider the following 4 vectors.

v1 =

 1
1
0

 , v2 =

 2
3
1

 , v3 =

 1
5
4

 , v4 =

 3
7
4


We can verify that U = span{v1,v2,v3.v4} = span{v1,v2} noting that v3 = −7v1 + 4v2 and
v4 = −5v1 +4v2. Indeed dim(U) = 2. While U ⊆ R3 it is natural to consider U as a 2-dimensional
vector space and in fact we can write our vectors in blue coordinates with respect to the basis v1,v2

of U .  1
1
0

 is

[
1
0

]
,

 2
3
1

 is

[
0
1

]
,

 1
5
4

 is

[
−7
4

]
,

 3
7
4

 is

[
−5
4

]
.

A somewhat different example is from the assignment. Let W = span{cos2(x), sin2(x)}. We
deduce that {cos2(x), sin2(x)} is a basis for W so we can coordinatize with respect to this basis.

cos2(x) is

[
1
0

]
, sin2(x) is

[
0
1

]
, 2 is

[
2
2

]
, cos(2x) is

[
1
−1

]
.

As a vector space over R we can think of W as R2. Of course as functions, there are more properties.
We can’t differentiate a vector but we can differentiate cos2(x).

A student in MATH 223 in 2015 said that U and W were thinly veiled examples of R2. And of
course similarly we think of a vector space X with dim(X) = k as a thinly veiled example of Rk.
To make this precise consider the following definition.



Definition 2 Given two vector spaces U, V over the same field F , we say that U and V are iso-
morphic if there is a bijective map h : U → V with h(0) = 0 (the first 0 is in U and the second 0
is in V ) and with the property that for any x,y ∈ U , we have h(x + y) = h(x) + h(y) and for any
c ∈ F , h(cx) = ch(x).

Remember that the isomorhism need not preserve other properties of the elements of U and V
that are not associated with being a vector space.

Theorem 3 If U and V are vector spaces over the same field and dim(U) = dim(V ) then U and
V are isomorphic.

Proof: Let k = dim(U) = dim(V ). Assume k > 0. Let U have basis u1,u2, . . . ,uk and V has
basis v1,v2, . . . ,vk. Then define h(ui) = vi and extend to all vectors of U by linearity; namely
for u =

∑k
i=1 aiui and so define h(u) =

∑k
i=1 aivi. We easily show that h is a bijection and

h−1(vi) = ui.
When 0 = dim(U) = dim(V ), then each consists of just the zero vector and so the isomorphism

is easy.

The following is an important application of dimension.

Theorem 4 An m×m matrix A is diagonalizable if and only if there is a basis of Rm consisting
of eigenvectors of A.

Proof: If A is diagonalizable then there is a diagonal matrix D and an invertible matrix M with
AM = MD. But then each column of M is an eigenvector of A (no column of M can be 0 since
M is invertible. And since M is invertible, the columns of M are linearly independent and since
there are m of them they form a basis for Rm.

If there is a basis of Rm say {v1,v2, . . . ,vm then if we form the matrix M whose columns are
the vi’s then M is invertible. If Avi = λivi, then we have AM = MD where the ith diagonal entry
is λi.

Some examples. Imagine we have a 3-dimensional vector space V = span{f1(x), f2(x), f3(x)}
where f1(x) = ex, f2(x) = e2x and f3(x) = e3x. Demonstrating that these three are linearly
independent is relatively easy (you could even examine the differing growth rates of the functions
to prove linear independence). We can think of {fi(x), f2(x), f3(x)} as a basis F for V . We consider
the linear transformation T : V → V defined as

T (h(x)) = h(x) +
d

dt
h(x).

We can represent T by a matrix when considering vectors in V written with respect to F . 2 0 0
0 3 0
0 0 4


T with respect to F

We can consider other coordinate systems for V . Let g1(x) = ex + e2x, g2(x) = e2x + e3x and
g3(x) = ex + e3x. We have the following

M =

g1 g2 g3
f1
f2
f3

 1 0 1
1 1 0
0 1 1


F ← G



We can compute

M−1 =

f1 f2 f3
g1
g2
g3

 1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 −1/2 1/2


G← F

The existence of M−1 means that f1, f2, f3 ∈ span{g1(x), g2(x), g3(x)} and easily we see
span{g1(x), g2(x), g3(x)} ⊆ V from which we deduce that span{g1(x), g2(x), g3(x)} = V and so
{g1(x), g2(x), g3(x)} forms a basis for V . What is T written as a matrix with respect to G?

 1/2 1/2 −1/2
−1/2 1/2 1/2
1/2 −1/2 1/2


G← F

 2 0 0
0 3 0
0 0 4


T with respect to F

 1 0 1
1 1 0
0 1 1


F ← G

=

 5/2 −1/2 −1
1/2 7/2 1
−1/2 1/2 3


T with respect to G

You can check

T (g1 + g2) = T

 1
1
0


G

 =

 5/2 −1/2 −1
1/2 7/2 1
−1/2 1/2 3


T with respect to G

 1
1
0


G

=

 2
4
0


G

(1)

We note that g1(x) + g2(x) = ex + 2e2x + e3x = f1(x) + 2f2(x) + f3(x) so that 1
1
0


G

=

 1
2
1


F

We T (f1(x) + 2f2(x) + f3(x)) is computed as 2 0 0
0 3 0
0 0 4


T with respect to F

 1
2
1


F

=

 2
6
4


F

= 2f1(x) + 6f2(x) + 4f3(x).

We compute 2f1(x)+6f2(x)+4f3(x) = 2ex+6e2x+4e3x = 2(ex+e2x)+4(e2x+e3x) = 2g1(x)+4g2(x).
This is (1) above.


