If we have a set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ where we set $U = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$, it is natural to express any vector $u \in U$ as a linear combination of the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$, namely

$$\mathbf{u} = c_1 \mathbf{u}_2 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k$$

where we think of c_1, c_2, \ldots, c_k as the *coordinates* of **u** with respect to the spanning set $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$. Now if $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$ is linearly independent, then the coordinates behave as we would hope, namely they are unique.

Theorem 1 If the set $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$ is linearly independent, then for each vector $\mathbf{u} \in U =$ span $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$, there are unique numbers c_1, c_2, \ldots, c_k (the coordinates) such that $\mathbf{u} = c_1\mathbf{u}_2 + c_2\mathbf{u}_2 + \cdots + c_k\mathbf{u}_k$.

Proof: The existence of numbers c_1, c_2, \ldots, c_k follows from the fact that $\mathbf{u} \in U = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k\}$. Assume

$$\mathbf{u} = c_1 \mathbf{u}_2 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k$$
$$\mathbf{u} = d_1 \mathbf{u}_2 + d_2 \mathbf{u}_2 + \dots + d_k \mathbf{u}_k$$

Then by subtracting the two equations we obtain

$$\mathbf{0} = (c_1 - d_1)\mathbf{u}_2 + (c_2 - d_2)\mathbf{u}_2 + \dots + (c_k - d_k)\mathbf{u}_k.$$

Since the set $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k\}$ is linearly independent, then we deduce that $c_1 - d_1 = 0, c_2 - d_2 = 0, \dots, c_k - d_k = 0$ and hence $c_1 = d_1, c_2 = d_2, \dots, c_k = d_k$.

Thus if we have a k-dimensional vector space than we can coordinatize the vectors as elements of \mathbf{R}^{k} . Consider the following 4 vectors.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2\\3\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 1\\5\\4 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 3\\7\\4 \end{bmatrix}$$

We can verify that $U = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2\}$ noting that $\mathbf{v}_3 = -7\mathbf{v}_1 + 4\mathbf{v}_2$ and $\mathbf{v}_4 = -5\mathbf{v}_1 + 4\mathbf{v}_2$. Indeed dim(U) = 2. While $U \subseteq \mathbf{R}^3$ it is natural to consider U as a 2-dimensional vector space and in fact we can write our vectors in blue coordinates with respect to the basis $\mathbf{v}_1, \mathbf{v}_2$ of U.

$$\begin{bmatrix} 1\\1\\0 \end{bmatrix} \text{ is } \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\1 \end{bmatrix} \text{ is } \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1\\5\\4 \end{bmatrix} \text{ is } \begin{bmatrix} -7\\4 \end{bmatrix}, \begin{bmatrix} 3\\7\\4 \end{bmatrix} \text{ is } \begin{bmatrix} -5\\4 \end{bmatrix}.$$

A somewhat different example is from the assignment. Let $W = \text{span}\{\cos^2(x), \sin^2(x)\}$. We deduce that $\{\cos^2(x), \sin^2(x)\}$ is a basis for W so we can coordinatize with respect to this basis.

$$\cos^2(x)$$
 is $\begin{bmatrix} 1\\0 \end{bmatrix}$, $\sin^2(x)$ is $\begin{bmatrix} 0\\1 \end{bmatrix}$, 2 is $\begin{bmatrix} 2\\2 \end{bmatrix}$, $\cos(2x)$ is $\begin{bmatrix} 1\\-1 \end{bmatrix}$.

As a vector space over \mathbf{R} we can think of W as \mathbf{R}^2 . Of course as functions, there are more properties. We can't differentiate a vector but we can differentiate $\cos^2(x)$.

A student in MATH 223 in 2015 said that U and W were thinly veiled examples of \mathbb{R}^2 . And of course similarly we think of a vector space X with $\dim(X) = k$ as a thinly veiled example of \mathbb{R}^k . To make this precise consider the following definition.

Definition 2 Given two vector spaces U, V over the same field F, we say that U and V are isomorphic if there is a bijective map $h : U \to V$ with $h(\mathbf{0}) = \mathbf{0}$ (the first $\mathbf{0}$ is in U and the second $\mathbf{0}$ is in V) and with the property that for any $\mathbf{x}, \mathbf{y} \in U$, we have $h(\mathbf{x} + \mathbf{y}) = h(\mathbf{x}) + h(\mathbf{y})$ and for any $c \in F$, $h(c\mathbf{x}) = ch(x)$.

Remember that the isomorhism need not preserve other properties of the elements of U and V that are not associated with being a vector space.

Theorem 3 If U and V are vector spaces over the same field and $\dim(U) = \dim(V)$ then U and V are isomorphic.

Proof: Let $k = \dim(U) = \dim(V)$. Assume k > 0. Let U have basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ and V has basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$. Then define $h(\mathbf{u}_i) = \mathbf{v}_i$ and extend to all vectors of U by linearity; namely for $\mathbf{u} = \sum_{i=1}^k a_i \mathbf{u}_i$ and so define $h(\mathbf{u}) = \sum_{i=1}^k a_i \mathbf{v}_i$. We easily show that h is a bijection and $h^{-1}(\mathbf{v}_i) = \mathbf{u}_i$.

When $0 = \dim(U) = \dim(V)$, then each consists of just the zero vector and so the isomorphism is easy.

The following is an important application of dimension.

Theorem 4 An $m \times m$ matrix A is diagonalizable if and only if there is a basis of \mathbb{R}^m consisting of eigenvectors of A.

Proof: If A is diagonalizable then there is a diagonal matrix D and an invertible matrix M with AM = MD. But then each column of M is an eigenvector of A (no column of M can be **0** since M is invertible. And since M is invertible, the columns of M are linearly independent and since there are m of them they form a basis for \mathbb{R}^m .

If there is a basis of \mathbf{R}^m say $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ then if we form the matrix M whose columns are the \mathbf{v}_i 's then M is invertible. If $A\mathbf{v}_i = \lambda_i \mathbf{v}_i$, then we have AM = MD where the *i*th diagonal entry is λ_i .

Some examples. Imagine we have a 3-dimensional vector space $V = \text{span}\{f_1(x), f_2(x), f_3(x)\}$ where $f_1(x) = e^x$, $f_2(x) = e^{2x}$ and $f_3(x) = e^{3x}$. Demonstrating that these three are linearly independent is relatively easy (you could even examine the differing growth rates of the functions to prove linear independence). We can think of $\{f_i(x), f_2(x), f_3(x)\}$ as a basis F for V. We consider the linear transformation $T: V \to V$ defined as

$$T(h(x)) = h(x) + \frac{d}{dt}h(x).$$

We can represent T by a matrix when considering vectors in V written with respect to F.

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

T with respect to F

We can consider other coordinate systems for V. Let $g_1(x) = e^x + e^{2x}$, $g_2(x) = e^{2x} + e^{3x}$ and $g_3(x) = e^x + e^{3x}$. We have the following

$$M = \begin{array}{c} f_1 & g_1 & g_2 & g_3 \\ f_1 & \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ f_3 & \end{bmatrix} \\ F \leftarrow G$$

We can compute

$$M^{-1} = \begin{array}{c} g_1 \\ g_2 \\ g_3 \end{array} \begin{bmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \\ G \leftarrow F \end{array} \end{bmatrix}$$

The existence of M^{-1} means that $f_1, f_2, f_3 \in \text{span}\{g_1(x), g_2(x), g_3(x)\}$ and easily we see $\text{span}\{g_1(x), g_2(x), g_3(x)\} \subseteq V$ from which we deduce that $\text{span}\{g_1(x), g_2(x), g_3(x)\} = V$ and so $\{g_1(x), g_2(x), g_3(x)\}$ forms a basis for V. What is T written as a matrix with respect to G?

$$\begin{bmatrix} 1/2 & 1/2 & -1/2 \\ -1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 5/2 & -1/2 & -1 \\ 1/2 & 7/2 & 1 \\ -1/2 & 1/2 & 3 \end{bmatrix}$$
$$G \leftarrow F \qquad T \text{ with respect to } F \qquad F \leftarrow G \qquad T \text{ with respect to } G$$

You can check

$$T(g_1 + g_2) = T\left(\begin{bmatrix} 1\\1\\0 \end{bmatrix}_G \right) = \begin{bmatrix} 5/2 & -1/2 & -1\\1/2 & 7/2 & 1\\-1/2 & 1/2 & 3\\T \text{ with respect to } G \end{bmatrix} \begin{bmatrix} 1\\1\\0 \end{bmatrix}_G = \begin{bmatrix} 2\\4\\0 \end{bmatrix}_G$$
(1)

We note that $g_1(x) + g_2(x) = e^x + 2e^{2x} + e^{3x} = f_1(x) + 2f_2(x) + f_3(x)$ so that

$$\begin{bmatrix} 1\\1\\0 \end{bmatrix}_G = \begin{bmatrix} 1\\2\\1 \end{bmatrix}_F$$

We $T(f_1(x) + 2f_2(x) + f_3(x))$ is computed as

$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}_F = \begin{bmatrix} 2 \\ 6 \\ 4 \end{bmatrix}_F = 2f_1(x) + 6f_2(x) + 4f_3(x).$$
T with respect to *F*

We compute $2f_1(x) + 6f_2(x) + 4f_3(x) = 2e^x + 6e^{2x} + 4e^{3x} = 2(e^x + e^{2x}) + 4(e^{2x} + e^{3x}) = 2g_1(x) + 4g_2(x)$. This is (1) above.