Guidelines for Optimization Problems

- 1. Read the problem carefully, identify the variables, and organize the given information with a picture
- 2. Identify the objective function (the function to be optimized). Write it in terms of the variables of the problem.
- 3. Identify the constraint(s). Write them in terms of the variables of the problem.
- Use the constraint(s) to eliminate all but one independent variable of the objective function.
- 5. With the objective function expressed in terms of a single variable, find the interval of interest for that variable
- 6. Use methods of calculus to find the absolute maximum or minimum value of the objective function on the interval of interest. If necessary, check the endpoints.

7. Units. 8. Reflect

Question 1.

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that borders a straight river. He does not need a fence along the river. What are the dimensions of the field that has the

largest area?

$$A = X \cdot Y$$

$$3)$$
 $2X+y=2,400 ft.$

Opt II: A'(X) =0 only of X=600.

A(x) has only one loc. ext. so it is an absolute extremum.

Since X=600 is a lec. mex. it is a glebal max.

Question 2.

Find two numbers whose difference is 100 and whose product is a minimum.

X, y are the two numbers.

Torget function: P = X.yConstraint: Y-X=100.

Y = 100 + X

P (x) = X.y = X(100+X) = X2+100X

Concave up parabula.

dp = 2x+100 =0

Question 3.

Find the point of the line 6x + y = 9 that is closest to the point (-3, 0).

Terget Function:

Q = (X+3)2 + y21

1>0

So minimizing d is

the same as minimizing

 $T = (\chi + 3)^2 + Y^2$

Constraints:

6X+Y=9)=9-6X

 $T(X) = (X+3)^2 + (9-6X)^2$

T'(x) = 2(x+3) + 2(9-6x)(-6) = 74x-102=0

 $X = \frac{102}{74} = \frac{51}{37}$, $Y = 9 - 6. \frac{51}{37}$.

The only critical point.

(X, Y)

(-3,0), m. (-6) = -1 $y = \frac{1}{2}(x - (-3)) + 0$ $=\frac{1}{6}(x+3)$

Recall $y = m_3 \times + b_2$ $y = m_1 \times + b_1$ $m_1 \cdot m_2 = -1$

6x+y=9 -6x+y=5 ~ The same solution

Question 4.

A cylindrical can is being made to contain 1 L of oil. Find the dimensions that will minimize the amount of metal needed to make the can.

Target function:

$$A = 2\pi \Gamma h + 2 \cdot \pi \Gamma^{2}$$
body

$$Log/bettom$$

Constraints:

$$V = \pi \Gamma^{2} \cdot h = 1,000 \quad \text{[Cm3]}$$

$$A(\Gamma) = 3\pi \kappa \cdot \frac{1000}{\pi \Gamma^{2}} + 3\pi \Gamma^{2} = \frac{3000}{\Gamma} + 3\pi \Gamma^{2}$$

$$A = \frac{3}{\Gamma} \frac{500}{\Gamma} \text{ [Cm]} \quad h = \frac{1000}{\pi} \frac{1000}{\Gamma} \text{ [Im]} \quad h = \frac{3}{\pi} \frac{500}{\Gamma} \text{ [Im]} \quad h = \frac{1000}{\pi} \frac{1000}{\Gamma} \text{ [Im]} \quad h = \frac{3}{\pi} \frac{500}{\Gamma} \text{ [Im]} \quad h = \frac{1000}{\pi} \frac{1000}{\Gamma} \text{ [Im]} \quad h = \frac{3}{\pi} \frac{500}{\Gamma} \text{ [Im]} \quad h = \frac{1000}{\pi} \frac{1000}{\Gamma} \text{ [Im]} \quad h = \frac{1000}{\Gamma} \text{ [Im]} \quad h = \frac{1000}{\pi} \frac{1000}{\Gamma} \text{ [Im]} \quad h = \frac{1000}{\Gamma} \frac{1000}{\Gamma} \text{ [Im]} \quad$$

Question 5.

If 1200 cm² of material is available to make a box with a square base and open top, find the largest possible volume of the box.

Torget funct

X2 + 4 X / = 1200 Em 3

r= 1300 - X3

N(X) = Xx 1300-Xx = 1 . X . (1300-Xx) = 1/4 (1200X-X3)

 $\frac{dV}{dx} = \frac{1}{4}(1200 - 3X^2) = 0$

Only X= +20 is in the Lonein

X=20 [cm]

V(2e) = ... [cm].

 $X = \pm 20$

X=20 is not the only loc. ext. of V(x) on $(-\infty,\infty)$. But it is the only lec. ext.
of V(x) on (0,00) so it is an absolute ext. on $(0,\infty)$ It is a local max hence on absolute max. for (0,00).