MATH 223

Assignment #1

1. Let $A = \begin{bmatrix} 0 & x \\ 1 & y \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix}$. Determine all x, y so that AB = BA.

2. Find a 2×2 matrix A, no entry of which is 0, with $A^2 = A$. Note that your first guesses A = I or A = 0 (or indeed $A = E_{11}$) have 0 entries.

3. Darryl has a sum of s dollars in t coins. The coins are either \$.25 or \$.10 Express the number x of quarters (\$.25 coins) and the number y of dimes (\$.1 coins) in terms of s and t.

4. Assume you are given a pair of matrices A, B which satisfy AB = BA. Show that if we set $C = A^2 + 2A$ and $D = B^3 + 5I$, then CD = DC. Then try to generalize this in some interesting way, namely find a property so that for matrices C, D with that certain property, then CD = DC. For example $C = A^2 + 6A$ and $D = 3B^3 - 2I$ will also have CD = DC.

5. Let $R(\theta)$ denote the matrix of the transformation which rotates the plane by θ counterclockwise around the origin. Explain in words (using transformations) why $R(\theta)R(\phi) = R(\theta + \phi)$. Show how you can use this to derive the formulas for $\cos(\theta + \phi)$, $\sin(\theta + \phi)$ in terms of $\cos(\theta)$, $\sin(\theta)$, $\cos(\phi)$, $\sin(\phi)$.

6. Find the matrix A associated with the linear transformation T that has $T\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}2\\3\end{pmatrix}$ and $T\begin{pmatrix}2\\3\end{pmatrix} = \begin{pmatrix}5\\4\end{pmatrix}$.

7. a) Assume A, B are 2×2 invertible matrices so that A^{-1} and B^{-1} exist. Show that $(AB)^{-1} = B^{-1}A^{-1}$. b) Given

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \text{ then define } A^T = \left[\begin{array}{cc} a & c \\ b & d \end{array} \right],$$

where A^T is called the *transpose* of A. The dot product of two vectors $\mathbf{x} = \begin{pmatrix} a \\ b \end{pmatrix}$, $\mathbf{y} = \begin{pmatrix} c \\ d \end{pmatrix}$ is $\mathbf{x} \cdot \mathbf{y} = ac + bd$. Then the i, j entry of AB is the dot product of the *i*th row of A and the *j*th column of B. Using this idea, show that $(AB)^T = B^T A^T$. (One could verify $(AB)^T = B^T A^T$ for two arbitrary 2×2 matrices A, B directly but the argument wouldn't generalize to larger matrices).

8. Consider two nonzero vectors $\mathbf{x} = {a \choose b}$, $\mathbf{y} = {c \choose d}$. Then there is a θ with $0 \le \theta < 2\pi$ and a $\rho > 0$ so that $\mathbf{y} = \rho R(\theta) \mathbf{x}$. Use our knowledge of rotation matrices to establish a simple condition on a, b, c, d so that the angle θ satisfies $0 < \theta < \pi$. You may assume a, b, c, d are nonzero, if that assists you, and even assume the two vectors \mathbf{x}, \mathbf{y} have the same length ($\rho = 1$).