1. Let \(A = \begin{bmatrix} 0 & x \\ 1 & y \end{bmatrix} \) and \(B = \begin{bmatrix} 3 & 1 \\ 1 & 1 \end{bmatrix} \). Determine all \(x, y \) so that \(AB = BA \).

2. Find a \(2 \times 2 \) matrix \(A \), no entry of which is 0, with \(A^2 = A \). Note that your first guesses \(A = I \) or \(A = 0 \) (or indeed \(A = E_{11} \)) have 0 entries.

3. Darryl has a sum of \(s \) dollars in \(t \) coins. The coins are either \($.25 \) or \($.10 \) Express the number \(x \) of quarters (\$.25 coins) and the number \(y \) of dimes (\$.1 coins) in terms of \(s \) and \(t \).

4. Assume you are given a pair of matrices \(A, B \) which satisfy \(AB = BA \). Show that if we set \(C = A^2 + 2A \) and \(D = B^3 + 5I \), then \(CD = DC \). Then try to generalize this in some interesting way, namely find a property so that for matrices \(C, D \) with that certain property, then \(CD = DC \). For example \(C = A^2 + 6A \) and \(D = 3B^3 - 2I \) will also have \(CD = DC \).

5. Let \(R(\theta) \) denote the matrix of the transformation which rotates the plane by \(\theta \) counterclockwise around the origin. Explain in words (using transformations) why \(R(\theta)R(\phi) = R(\theta + \phi) \). Show how you can use this to derive the formulas for \(\cos(\theta + \phi), \sin(\theta + \phi) \) in terms of \(\cos(\theta), \sin(\theta), \cos(\phi), \sin(\phi) \).

6. Find the matrix \(A \) associated with the linear transformation \(T \) that has \(T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix} \) and \(T \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 4 \end{pmatrix} \).

7. a) Assume \(A, B \) are \(2 \times 2 \) invertible matrices so that \(A^{-1} \) and \(B^{-1} \) exist. Show that \((AB)^{-1} = B^{-1}A^{-1} \).

b) Given
\[
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
\]
then define \(A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \), where \(A^T \) is called the transpose of \(A \). The dot product of two vectors \(\mathbf{x} = \begin{pmatrix} a \\ b \end{pmatrix}, \mathbf{y} = \begin{pmatrix} c \\ d \end{pmatrix} \) is \(\mathbf{x} \cdot \mathbf{y} = ac + bd \). Then the \(i, j \) entry of \(AB \) is the dot product of the \(i \)th row of \(A \) and the \(j \)th column of \(B \). Using this idea, show that \((AB)^T = B^TA^T \). (One could verify \((AB)^T = B^TA^T \) for two arbitrary \(2 \times 2 \) matrices \(A, B \) directly but the argument wouldn’t generalize to larger matrices).

8. Consider two nonzero vectors \(\mathbf{x} = \begin{pmatrix} a \\ b \end{pmatrix}, \mathbf{y} = \begin{pmatrix} c \\ d \end{pmatrix} \). Then there is a \(\theta \) with \(0 \leq \theta < 2\pi \) and a \(\rho > 0 \) so that \(\mathbf{y} = \rho R(\theta)\mathbf{x} \). Use our knowledge of rotation matrices to establish a simple condition on \(a, b, c, d \) so that the angle \(\theta \) satisfies \(0 < \theta < \pi \). You may assume \(a, b, c, d \) are nonzero, if that assists you, and even assume the two vectors \(\mathbf{x}, \mathbf{y} \) have the same length (\(\rho = 1 \)).